Project description:This SuperSeries is composed of the following subset Series:; GSE5388: Adult postmortem brain tissue (dorsolateral prefrontal cortex) in subjects with bipolar disorder; GSE5389: Adult postmortem brain tissue (ortibtofrontal cortex) in subjects with bipolar disorder; Bipolar affective disorder is a severe psychiatric disorder with a strong genetic component but unknown pathophysiology. We used microarray technology (Affymetrix HG-U133A GeneChips) to determine the expression of approximately 22 000 mRNA transcripts in post-mortem brain tissue (dorsolateral prefrontal cortex and orbitofrontal cortex) from patients with bipolar disorder and matched healthy controls. Experiment Overall Design: Refer to individual Series
Project description:We performed the Chip-seq to brain tissues from prefrontal cortex region in AD Postmortem samples and non-dementia control postmortem samples.
Project description:We performed the ATAC-seq to brain tissue from prefrontal cortex region in 6 AD Postmortem samples and 6 control non-dementia postmortem samples.
Project description:The ability to use blood to predict the outcomes of Parkinson’s disease (PD), including disease progression and development of cognitive and motor complications, would be of enormous clinical value. We undertook deep RNA sequencing from the caudate and putamen of postmortem PD (n=35) and control (n=40) striatum, and compared molecular profiles with clinical features, and samples obtained from antemortem peripheral blood from an independent cohort. Cognitive and motor complications of PD were associated with molecular changes in the caudate (e.g., stress response) and putamen (endothelial pathways) respectively. Later and earlier-onset PD were molecularly distinct, and disease duration was associated with changes in caudate (oligodendrocyte development) and putamen (cellular senescence) respectively. Molecular signatures in the postmortem PD brain were also evident in antemortem peripheral blood, and correlated with clinical disease features. Together, these findings identify molecular signatures in PD patients' brain and blood of potential pathophysiologic and prognostic importance
Project description:FK506 binding protein 51kDa (FKBP51/FKBP5) is part of a mature heat shock protein 90kDa (Hsp90) chaperone complex that preserves tau. Microarray analysis of human brains reveal that FKBP51 gene expression selectively increased with age and Alzheimer's disease, which correlated with demethylation of the regulatory regions in the FKBP5 gene. Moreover, FKBP51 levels significantly correlated with Braak pathological staging. In addition, we show that in brains devoid of FKBP51, tau levels are reduced. Recombinant FKBP51 and Hsp90 synergize to block tau clearance through the proteasome and produce T22-positive tau oligomers. Overexpression of FKBP51 in a tau transgenic mouse model revealed that FKBP51 preserved tau species, including phosphorylated and oligomeric tau that have been linked to Alzheimer's disease pathogenesis. FKBP51 blocked amyloid formation and decreased tangle load in the brain. These alterations in tau turnover and aggregate structure culminated in enhanced neurotoxicity. We propose a model where age-associated increases in FKBP51 levels can out-compete the association of other pro-degradation Hsp90 co-chaperones, resulting in neurotoxic tau accumulation. Thus, strategies aimed at attenuating FKBP51 levels or its interaction with Hsp90 could be therapeutically relevant for Alzheimer's disease and other tauopathies. These AD cases were processed simultaneously with the control cases (young and aged) included in GSE11882 Postmortem brain tissue was collected from ADRC brain banks. Cases were preferentially selected where 3 or more brain regions were available
Project description:Sporadic early-onset Alzheimer’s Disease (sEOAD) represents a significant but less-studied subtype of Alzheimer’s Disease. In this study, we generated a single-nucleus multiome atlas from over 70,000 nuclei derived from the postmortem prefrontal cortex, entorhinal cortex, and hippocampus of four sEOAD patients and five control donors. Comprehensive analyses were conducted to delineate cell type-specific transcriptomic changes and linked candidate cis-regulatory elements (cCREs) across these brain regions. We identified and prioritized seven conservative transcription factors in glial cells and neurons in multiple brain regions, including RFX4 in astrocytes and IKZF1 in microglia, which are implicated in the regulation of sEOAD-associated genes. Moreover, we investigated altered intercellular signaling between glial cells and neurons, highlighting their regulatory potential on gene expression in receiver cells. Finally, we reported an enrichment of late-onset Alzheimer’s Disease risk loci within microglial cCREs linked to sEOAD-associated genes. This atlas enhances our understanding of the transcriptional and chromatin dynamics in sEOAD and provides a foundational resource for further pathological investigations.
Project description:To identify molecular pathological alterations in AD brains, we performed interspecies comparative microarray analyses using RNAs prepared from postmortem human brain tissues donated for the Hisayama study and hippocampal RNAs from the triple-transgenic mouse model of AD (3xTg-AD) Three-way ANOVA of microarray data from frontal cortex, temporal cortex and hippocampus with presence/absence of AD and vascular dementia, and sex, as factors revealed that the gene expression profile is most significantly altered in the hippocampi of AD brains. Comparative analyses of the brains of AD patients and a mouse model of AD showed that genes involved in non-insulin dependent DM and obesity were significantly altered in both, as were genes related to psychiatric disorders and Alzheimer’s disease. We prepared RNA samples from the gray matter of frontal and temporal cortices and hippocampi derived from 88 postmortem brains, among which 26 cases were pathologically diagnosed as having AD or an AD-like disorder. High-quality RNA (RIN≧6.9) samples were subjected to microarray analysis using the Affymetrix Human Gene 1.0 ST platform, and only those results that passed examinations for quality assurance and quality control of the Human Gene 1.0 ST arrays were retrieved. In total, we obtained gene expression profiles from the following samples: 33 frontal cortex samples, among which 15 were from AD patients; 29 temporal cortex samples, among which 10 were from AD patients; 17 hippocampus samples, among which seven were from AD patients
Project description:Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive cognitive impairment and neurodegeneration as a result of abnormal neuronal loss. To elucidate the molecular systems associated with AD, we characterized the gene expression changes associated with multiple clinical and neuropathological traits in 1,053 postmortem brain samples across 19 brain regions from 125 persons dying with varying severities of dementia and variable AD-neuropathology severities. 125 human brains were accessed from the Mount Sinai/JJ Peters VA Medical Center Brain Bank (MSBB). This brain resource was assembled after applying stringent inclusion/exclusion criteria and represents the full spectrum of clinical and neuropathological disease severity in the absence of discernable non-AD neuropathology. RNA samples from 19 brain regions isolated from the 125 MSBB specimens were collected and profiled using Affymetrix Genechip microarrays. There were 50 to 60 subjects per brain region with varying degrees of AD pathological abnormalities.
Project description:Anorexia nervosa (AN), bulimia nervosa (BN), and obsessive-compulsive disorder (OCD) are complex psychiatric disorders with shared obsessive features, thought to arise from the interaction of multiple genes of small effect with environmental factors. Potential candidate genes for AN, BN, and OCD have been identified through clinical association and neuroimaging studies; however, recent genome-wide association studies of eating disorders (ED) so far have failed to report significant findings. Additionally, few if any studies have interrogated postmortem brain tissue for evidence of eQTLs associated with candidate genes, which has particular promise as an approach to elucidating molecular mechanisms of association. We therefore selected single nucleotide polymorphisms (SNPs) based on candidate gene studies for AN, BN, and OCD from the literature, and examined the association of these SNPs with gene expression across the lifespan in prefrontal cortex of a non-psychiatric control cohort (N=268). Several risk-predisposing SNPs were significantly associated with gene expression among control subjects. We then measured gene expression in the prefrontal cortex of cases previously diagnosed with obsessive psychiatric disorders, e.g., eating disorders (ED; N=15), and obsessive-compulsive disorder/obsessive-compulsive personality disorder or tics (OCD/OCPD/Tic; N=16), and non-psychiatric controls (N=102) and identified 6 and 286 genes that were differentially expressed between ED compared to controls and OCD cases compared to controls, respectively (FDR < 5%). However, none of the clinical risk SNPs were among the eQTLs and none were significantly associated with gene expression within the broad obsessive cohort, suggesting larger sample sizes or other brain regions may be required to identify candidate molecular mechanisms of clinical association in postmortem brain datasets. Gene expression data from the dorsolateral prefrontal cortex (DLPFC) from postmortem tissue on 133 subjects - 15 eating disorder (ED) patients, 16 obessive compulsive disorder (OCD) patients, and 102 non-psychiatric controls - run on the Illumina HumanHT-12 v3 microarray