Project description:Here we map the molecular response of a synthetic community of 32 human gut bacteria to three non-antibiotic drugs by using five omics layers, namely 16S rRNA gene profiling, metagenomics, metatranscriptomics, metaproteomics, and metabolomics. Using this controlled setting, we find that all omics methods with species resolution in their readouts are highly consistent in estimating relative species abundances across conditions. Furthermore, different omics methods can be complementary in their ability to capture functional changes in response to the drug perturbations. For example, while nearly all omics data types captured that the antipsychotic drug chlorpromazine selectively inhibits Bacteroidota representatives in the community, the metatranscriptome and metaproteome suggested that the drug induces stress responses related to protein quality control and metabolomics revealed a decrease in polysaccharide uptake, likely caused by Bacteroidota depletion. Taken together, our study provides insights into how multi-omics datasets can be utilised to reveal complex molecular responses to external perturbations in microbial communities.
Project description:Microbial communities that degrade lignocellulosic biomass are typified by high levels of species- and strain-level complexity, as well as synergistic interactions between both cellulolytic and non-cellulolytic microorganisms. Here we deconvoluted a highly efficient cellulose-degrading and methanogenic consortium (SEM1b) that is co-dominated by Clostridium (Ruminiclostridium) thermocellum and multiple heterogenic strains affiliated to C. proteolyticus. A time-series analysis was performed over the entire lifetime span of the microbial community and comprised of metagenomic, metatranscriptomic, metabolomics, metaproteomic and 16S rRNA gene analysis for 8 time points, in triplicate. Metagenomic analysis of SEM1b recovered metagenome-assembled genomes (MAGs) for each constituent population, whereas in parallel two novel strains of C. proteolyticus were isolated and sequenced. Both the recovered MAGs and the isolated strains were used as a database for further functional meta-omics. Absolute quantitative metatranscriptomics was performed thanks the spike-in of an in vitro transcribed RNA as an internal standard and label-free quantification was used for the metaproteomic analysis. The present dataset has been used for several publications. The first aim of the project was to characterize the interactions between uncultured populations in a lignocellulose-degrading community. Furthermore, because of the in-depth multi-omics characterization of the community, the dataset was used to develop new approaches for meta-omics integration as well as to assess the protein-to-RNA ratio of multiple microbial populations simultaneously. Modifications of multi-omics toolkits allowed us to assess the linearity between transcriptome and proteome for each population over time and reveal deeper functional-related trends and integrative co-dependent metabolisms that drive the overall phenotype of microbial communities.
Project description:To explore the ecological basis for multiple bacteria species coexistence, we set up three bacteria (Ruegeria pomeroyi DSS-3, Vibrio hepatarius HF70, and Thalassospira sp. HF15), either in monoculture or in co-cultures (in all combinations) for a 8 day growth-dilution cycles. At ~15h of day 4 (P4) and day 8 (P8) of growth-dilution cycles, we examined transcriptomic responses of these bacteria. Differential gene expressions were used to generate hypothesis about ecological and physiological responses of one in the presence of another/other bacteria.
Project description:Dataset from a shipboard incubation experiment of an ocean surface-water microbial community sampled at 25m depth at Station ALOHA in the North Pacific Subtropical Gyre. Incubations were amended with ammonium, glutamate, leucine, nitrate and urea, in two isotopic variants: 15N (to track incorporation by various community members) and 14N (for quantitation of abundance changes by diDO-IPTL).