Project description:Abstract Ocean warming elevates metabolic rates in marine ectotherms but often constrains energetic resources, causing an imbalance between supply and demand. Transient hypoxia is near-ubiquitous across the world’s coral reefs and may exacerbate this imbalance, yet its effects on the energetics of reef fishes remain poorly understood. In this study, we assess the metabolic costs incurred by a cryptobenthic reef fish exposed to oxygen fluxes measured on the world’s hottest coral reefs in the Arabian/Persian Gulf. Hypoxia-exposure induced an 8.67% increase in aerobic metabolic rate over the six hours following reoxygenation, and resulted in an estimated 2.87% increase in total daily metabolic rate (mg O2 kg -1 day-1). This energetic cost did not coincide with detectable changes in anaerobic metabolism but was accompanied by increased activity during reoxygenation and a strong, acute transcriptomic response in genes related to oxygen-sensing. Oxygen availability on the reefs declined below the threshold for inducing such energetic costs on over half (56.04%) of the days throughout the summer, potentially leading to substantial cumulative costs. Such energetic costs represent an additional and previously under-appreciated consequence of hypoxia in coral reef environments that may exacerbate the temperature-induced mismatches between energy supply and demand, a key balance affecting growth and fitness.
Project description:Coral reef sponges efficiently take up particulate and dissolved organic matter (DOM) from the water column and release compounds such as nucleosides, amino acids, and other dissolved metabolites to the surrounding reef via their exhalent seawater, but the influence of this process on reef picoplankton and nutrient processing is relatively unexplored. Here we examined the impact of sponge exhalent on the reef picoplankon community and subsequent alterations to the reef dissolved metabolite pool. We exposed reef picoplankton communities to a sponge exhalent water mixture (Niphates digitalis and Xestospongia muta) or filtered reef seawater (control) in closed, container-based dark incubations. We used 16S rRNA gene sequencing and flow cytometry-based cell counts to examine the picoplankton community and metabolomics and other analyses to examine the dissolved metabolite pool. The initial sponge exhalent was enriched in adenosine, inosine, chorismate, humic-like and amino acid-like components, and ammonium. Following 48 h of exposure to sponge exhalent, the picoplankton differed in composition, were reduced in diversity, showed doubled (or higher) growth efficiencies, and harbored increased copiotrophic and denitrifying taxa (Marinomonas, Pontibacterium, Aliiroseovarius) compared to control, reef-water based incubations. Alongside these picoplankton alterations, the sponge treatments, relative to seawater controls, had decreased adenosine, inosine, tryptophan, and ammonium, metabolites that may support the observed higher picoplankton growth efficiencies. Sponge treatments also had a net increase in several monosaccharides and other metabolites including anthranilate, riboflavin, nitrite, and nitrate. Our work demonstrates a link between sponge exhalent-associated metabolites and the picoplankton community, with exhalent water supporting an increased abundance of efficient, copiotrophic taxa that catabolize complex nutrients. The copiotrophic taxa were often different from those observed in previous algae and coral studies. These results have implications for better understanding the multifaceted role of sponges on picoplankton biomass with subsequent potential impacts to coral and other planktonic feeders in oligotrophic reef environments.
Project description:Aging is a multifactorial process that results in progressive loss of regenerative capacity and tissue function while simultaneously favoring the development of a large array of age-related diseases. Evidence suggests that the accumulation of senescent cells in tissue promotes both normal and pathological aging. Oxic stress is a key driver of cellular senescence. Because symbiotic long-lived reef corals experience daily hyperoxic and hypoxic transitions, we hypothesized that these long-lived animals have developed specific longevity strategies in response to light. We analyzed transcriptome variation in the reef coral Stylophora pistillata during the day–night cycle and revealed a signature of the FoxO longevity pathway. We confirmed this pathway by immunofluorescence using antibodies against coral FoxO to demonstrate its nuclear translocation. Among genes that were specifically up- or downregulated on exposure to light, human orthologs of two “light-up” genes (HEY1 and LONF3) exhibited anti-senescence properties in primary human fibroblasts. Therefore, these genes are interesting candidates for counteracting skin aging. We propose a large screen for other light-up genes and an investigation of the biological response of reef corals to light (e.g., metabolic switching) to elucidate these processes and identify effective interventions for promoting healthy aging in humans.