Project description:The aim of this study was to test the hypothesis that replenishing the microbiota with a fecal microbiota transplant (FMT) can rescue a host from an advanced stage of sepsis. We developed a clinically-relevant mouse model of lethal polymicrobial gut-derived sepsis in mice using a 4-member pathogen community (Candida albicans, Klebsiella oxytoca, Serratia marcescens, Enterococcus faecalis) isolated from a critically ill patient. In order to mimic pre-operative surgical patient condition mice were exposed to food restriction and antibiotics. Approximately 18 hours prior to surgery food was removed from the cages and the mice were allowed only tap water. Each mouse received an intramuscular Cefoxitin injection 30 minutes prior to the incision at a concentration of 25 mg/kg into the left thigh. Mice were then subjected to a midline laparotomy, 30% hepatectomy of the left lateral lobe of the liver and a direct cecal inoculation of 200 µL of the four pathogen community. On postoperative day one, the mice were administered rectal enema. Mice were given either 1 ml of fecal microbiota transplant (FMT) or an autoclaved control (AC). This was again repeated on postoperative day two. Mice were then followed for mortality. Chow was restored to the cages on postoperative day two, approximately 45 hours after the operation. The injection of fecal microbiota transplant by enema significantly protected mice survival, reversed the composition of gut microflora and down-regulated the host inflammatory response. The cecum, left lobe of the liver, and spleen were isolated from mice for microarray processing with three or more replicates for six expermental conditions: non-treated control, SAHC POD1, SAHC.AC POD2, SAHC.FMT POD2, SAHC.AC POD7, SAHC.FMT POD7
Project description:The aim of this study was to test the hypothesis that replenishing the microbiota with a fecal microbiota transplant (FMT) can rescue a host from an advanced stage of sepsis. We developed a clinically-relevant mouse model of lethal polymicrobial gut-derived sepsis in mice using a 4-member pathogen community (Candida albicans, Klebsiella oxytoca, Serratia marcescens, Enterococcus faecalis) isolated from a critically ill patient. In order to mimic pre-operative surgical patient condition mice were exposed to food restriction and antibiotics. Approximately 18 hours prior to surgery food was removed from the cages and the mice were allowed only tap water. Each mouse received an intramuscular Cefoxitin injection 30 minutes prior to the incision at a concentration of 25 mg/kg into the left thigh. Mice were then subjected to a midline laparotomy, 30% hepatectomy of the left lateral lobe of the liver and a direct cecal inoculation of 200 µL of the four pathogen community. On postoperative day one, the mice were administered rectal enema. Mice were given either 1 ml of fecal microbiota transplant (FMT) or an autoclaved control (AC). This was again repeated on postoperative day two. Mice were then followed for mortality. Chow was restored to the cages on postoperative day two, approximately 45 hours after the operation. The injection of fecal microbiota transplant by enema significantly protected mice survival, reversed the composition of gut microflora and down-regulated the host inflammatory response.
Project description:Rationale: Recent studies suggest a potential link between gut bacterial microbiota dysbiosis and PAH, but the exact role of gut microbial communities, including bacteria, archaea, and fungi, in PAH remains unclear. Objectives: To investigate the role of gut microbiota dysbiosis in idiopathic pulmonary arterial hypertension (IPAH) and to assess the therapeutic potential of fecal microbiota transplantation (FMT) in modulating PAH progression. Methods: Using shotgun metagenomics, we analyzed gut microbial communities in IPAH patients and healthy controls. FMT was performed to transfer gut microbiota from IPAH patients or MCT-PAH rats to normal rats and from healthy rats to MCT-PAH rats. Hemodynamic measurements, echocardiography, histological examination, metabolomic and RNA-seq analysis were conducted to evaluate the effects of FMT on PAH phenotypes. Measurements and Main Results: Gut microbiota analysis revealed significant alterations in the bacterial, archaeal, and fungal communities in IPAH patients compared to healthy controls. FMT from IPAH patients induced PAH phenotypes in recipient rats. Conversely, FMT from healthy rats to IPAH rats significantly ameliorated PAH symptoms, restored gut microbiota composition, and normalized serum metabolite profiles. Specific microbial species were identified with high diagnostic potential for IPAH, improving predictive performance beyond individual or combined microbial communities. Conclusions: This study establishes a causal link between gut microbiota dysbiosis and IPAH and demonstrates the therapeutic potential of FMT in reversing PAH phenotypes. The findings highlight the critical role of bacterial, archaeal, and fungal communities in PAH pathogenesis and suggest that modulation of the gut microbiome could be a promising treatment strategy for PAH.
Project description:The gut microbiota plays an important role in host health. Microbiota dysbiosis has been implicated in the global epidemic of Metabolic Syndrome (MetS) and could impair host metabolism by noxious metabolites. It has been well established that the gut microbiota is shaped by host immune factors. However, the effect of T cells on the gut microbiota is yet unknown. Here, we performed a metagenomic whole-genome shotgun sequencing (mWGS) study of the microbiota of TCRb-/- mice, which lack alpha/beta T cells.
Project description:This phase II trial studies the effect of fecal microbiota transplant and re-introduction of anti-PD-1 therapy (pembrolizumab or nivolumab) in treating anti-PD-1 non-responders with colorectal cancer that has spread to other places in the body (metastatic). Fecal microbiota transplants contain the normal bacteria and viruses found in fecal (stool) material. Immunotherapy with monoclonal antibodies, such as pembrolizumab and nivolumab, may help the body’s immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving pembrolizumab or nivolumab with fecal microbiota transplants may help to control the disease.
Project description:The aim of this project was to explore the role of gut microbiota in the development of small intestine. The gut microbiota from different groups was used to treat the mice for 1 or 2 weeks. Then the small intestine samples were collected. The RNA was used for the RNA-seq analysis to search the role of gut microbiota in the development of small intestine. Groups: IMA100 mean gut microbiota from Alginate oligosaccharide 100mg/kg treated mice; IMA10 mean gut microbiota from Alginate oligosaccharide 10mg/kg treated mice; IMC mean gut microbiota from control group mice (dosed with water); Sa mean dosed with saline (no gut microbiota). "1" mean dosed for 1 week, "2" means dosed for 2 weeks.
Project description:This SuperSeries is composed of the SubSeries listed below. Acquisition of the intestinal microbiota begins at birth, and a stable microbial community develops from a succession of key organisms. Disruption of the microbiota during maturation by low-dose antibiotic exposure can alter host metabolism and adiposity. We now show that low-dose penicillin (LDP), delivered from birth, induces metabolic alterations and affects ileal expression of genes involved in immunity. LDP that is limited to early life transiently perturbs the microbiota, which is sufficient to induce sustained effects on body composition, indicating that microbiota interactions in infancy may be critical determinants of long-term host metabolic effects. In addition, LDP enhances the effect of high-fat diet induced obesity. The growth promotion phenotype is transferrable to germ-free hosts by LDP-selected microbiota, showing that the altered microbiota, not antibiotics per se, play a causal role. These studies characterize important variables in early-life microbe-host metabolic interaction and identify several taxa consistently linked with metabolic alterations. Refer to individual Series
Project description:To examine potential changes of the intestinal microbiota in mice caused by repeated mild stress, we profiled bacteria and fungi in the mouse feces by sequencing the 16s v3v4 region and the ITS1-2 region.
Project description:Acquisition of the intestinal microbiota begins at birth, and a stable microbial community develops from a succession of key organisms. Disruption of the microbiota during maturation by low-dose antibiotic exposure can alter host metabolism and adiposity. We now show that low-dose penicillin (LDP), delivered from birth, induces metabolic alterations and affects ileal expression of genes involved in immunity. LDP that is limited to early life transiently perturbs the microbiota, which is sufficient to induce sustained effects on body composition, indicating that microbiota interactions in infancy may be critical determinants of long-term host metabolic effects. In addition, LDP enhances the effect of high-fat diet induced obesity. The growth promotion phenotype is transferrable to germ-free hosts by LDP-selected microbiota, showing that the altered microbiota, not antibiotics per se, play a causal role. These studies characterize important variables in early-life microbe-host metabolic interaction and identify several taxa consistently linked with metabolic alterations. Male mice were exposed to low-dose penicillin (6.7 mg/L), from birth. Ileums were collected at 8 weeks of age, RNA was extracted, and transcriptional differences were measured by microarray analysis.