Project description:Recent clinical studies have suggested that the risk of developing hepatocellular carcinoma might be lower in chronic hepatitis B (CHB) patients receiving tenofovir disoproxil fumarate (TDF) than in patients receiving entecavir (ETV), although there is no difference in biochemical and virological remission between two drugs. The effects of nucleoside analogs (NsAs; lamivudine and ETV) or nucleotide analogs (NtAs; adefovir disoproxil [ADV], TDF, and tenofovir alafenamide [TAF]) on cell growth and the expression of growth signaling molecules were investigated. The tumor inhibitory effects of NsAs or NtAs were evaluated using a mouse xenograft model, and protein phosphorylation profiles were investigated.
Project description:Class-switching to IgG2a/c in mice is a hallmark response to intracellular pathogens. T cells can promote class-switching and the predominant pathway for induction of IgG2a/c antibody responses has been suggested to be via stimulation from Th1 cells. We previously formulated CAF®01 (cationic liposomes containing dimethyldioctadecylammonium bromide (DDA) and Trehalose-6,6-dibehenate (TDB)) with the lipidated TLR7/8 agonist 3M-052 (DDA/TDB/3M-052), which promoted robust Th1 immunity in newborn mice. When testing this adjuvant in adult mice using the recombinant Chlamydia trachomatis (C.t.) vaccine antigen CTH522, it similarly enhanced IgG2a/c responses compared to DDA/TDB, but surprisingly reduced the magnitude of the IFN-g+ Th1 response in a TLR7 agonist dose-dependent manner. Single cell RNA-sequencing revealed that DDA/TDB/3M-052 liposomes initiated early transcription of class-switch regulating genes directly in pre-germinal center B cells. Mixed bone marrow chimeras further demonstrated that this adjuvant did not require Th1 cells for IgG2a/c switching, but rather facilitated TLR7-dependent T-bet programming directly in B cells. This study underlines that adjuvant-directed IgG2a/c class-switching in vivo can occur in the absence of T cell help, via direct activation of TLR7 on B cells and positions DDA/TDB/3M-052 as a powerful adjuvant capable of eliciting type I-like immunity in B cells without strong induction of Th1 responses.
Project description:The choice of growth media is a very important consideration of any cell-based proteomics experiment. Alterations thereof may result in differences in basal proteomes simply due to disparities in the metabolite composition of the media. We investigate the effect of growth media on the proteomes of three microorganisms, specifically E. coli, S. cerevisiae, and S. pombe, using tandem mass tag (TMT)-based quantitative proteomics. We compared the protein abundance profiles of these microorganisms propagated in two distinct growth media that are commonly used for the respective organism. Our sample preparation strategy included SP3 bead-assisted protein isolation and digestion. In addition, we assembled a replicate set of samples in which we altered the proteolytic digestion from sequential treatment with LysC and trypsin to only LysC. Despite differences in peptides identified and a drop in quantified proteins, the results were similar between the two datasets for all three microorganisms. Approximately 10% of the respective microbial proteomes were significantly altered in each dataset. As expected, gene ontology analysis revealed that the majority of differentially expressed proteins are implicated in metabolism. We emphasize further the importance of growth media selection and the potential consequences thereof.
Project description:Microbial dysbiosis is a colorectal cancer (CRC) hallmark and contributes to inflammation, tumor growth, and therapy response. Gut microbes signal via metabolites, but how the metabolites impact CRC is largely unknown. We interrogated fecal metabolites associated with mouse models of colon tumorigenesis with varying mutational load. We found that microbial metabolites from healthy mice or humans were growth-repressive, and this response was attenuated in mice and patients with CRC. Microbial profiling revealed that Lactobacillus reuteri and its metabolite, reuterin were downregulated in mouse and human CRC. Reuterin altered redox balance, and reduced survival, and proliferation in colon cancer cells. Reuterin induced selective protein oxidation, and inhibited ribosomal biogenesis and protein translation. Exogenous Lactobacillus reuteri restricted mouse colon tumor growth, increased tumor reactive oxygen species, and decreased protein translation in vivo. Our findings indicate that a healthy microbiome and specifically, Lactobacillus reuteri, is protective against CRC through microbial metabolite exchange.
Project description:Moso bamboo (Phyllostachys edulis) is one of the fast-growing plant species and has high comprehensive utilization value. However, how Moso bamboo realize the transition from initial growth of winter shoot to fast growth of spring shoot is still unknown. Large increase of biomass in spring shoot suggests that alterations in bioenergetic processes may contribute to fast growth initiation. In this study, we successfully isolated mitochondria from winter shoots and spring shoots of Moso bamboo, and performed a total and mitochondrial transcriptomic and proteomic analysis using RNA sequencing and Label-free quantitative proteomics technology. The main objective of the study was to augment the genomic and proteomic data available for Moso bamboo, identify key genes/proteins involved in energy metabolism, and systematically understand the energy metabolism mechanism of shoots growth during the transitory stage from initial growth to rapid growth.
Project description:Under crowded, nutrient-limiting conditions, growth in the marine chordate O. dioica arrests until favorable conditions return. We profiled translation genome-wide using ribosome profiling in O. dioica during growth arrest and growth arrest recovery. We found that initial recovery is independent of nutrient-responsive, trans-spliced genes, suggesting that animal density is the primary trigger for the resumption of development in this species.