Project description:Methamphetamine is a widely abused, highly addictive drug. Regulation of synaptic proteins within the brain’s reward pathway modulates addiction behaviours, the progression of drug addiction and long-term changes in brain structure and function that result from drug use. Therefore, using large scale proteomics studies we aim to identify global protein expression changes within the dorsal striatum, a key brain region involved in the modulation of addiction. We performed LC-MS/MS analyses on rat striatal synaptosomes following 30 days of methamphetamine self-administration (2 hours/day) and 14 days abstinence. We identified a total of 84 differentially-expressed proteins with known roles in neuroprotection, neuroplasticity, cell cytoskeleton, energy regulation and synaptic vesicles. We identify significant expression changes in stress-induced phosphoprotein and protein Tppp, which have not previously been associated with addiction. In addition, we confirm the role of amphiphysin and phosphatidylethanolamine binding protein in addiction. This approach has provided new insight into the effects of methamphetamine self-administration on synaptic protein expression in a key brain region associated with addiction, showing a large set of differentially-expressed proteins that persist into abstinence.
Project description:Methamphetamine addiction is mimicked in rats that self-administer the drug and accelerate their intake when given long access to it. Self-administration (SA) models do not include adverse consequences that are necessary to reach a diagnosis of addiction in humans. Here, we studied transcriptional consequences of methamphetamine SA and repeated foot-shocks in rat brain.
Project description:Methamphetamine addiction is mimicked in rats that self-administer the drug and accelerate their intake when given long access to it. Self-administration (SA) models do not include adverse consequences that are necessary to reach a diagnosis of addiction in humans. Here, we studied transcriptional consequences of methamphetamine SA and repeated foot-shocks in rat brain.
Project description:To understand how interactions of myeloma cells with osteoclasts and mesenchymal stem cells in the bone marrow affect the clinical course of myeloma, we used microarrays to study changes in gene expression in freshly isolated myeloma plasma cells following co-cultures with osteoclasts (8 experiments) or with mesenchymal stem cells (13 experiments). Interaction with osteoclasts induced changes in the expression of 675 genes, and interaction with mesenchymal stem cells induced changes in the expression of 296 genes. Expression of only 58 genes commonly and similarly changed in both co-culture systems. Among these, we identified genes associated with overall, progression-free, and post-relapse survival, and developed survival prediction models. Gene expression data from 347 patients treated with total therapy 2 protocol, 433 with total therapy 3, and 98 patients who received various treatments (91 of them high-dose therapy with autologous stem cell support) were used for the analysis. Good predictive models were developed only for post-relapse survival, using genes involved in interaction with osteoclasts or with mesenchymal stem cells. The best predictive model used expression of first relapse of 33 probesets whose expression changed in myeloma cells following interaction with osteoclasts, with hazard ratios of 24, 20, and 12 for patients who relapsed following total therapy 2, total therapy 3 and the various other treatments, respectively. Among the probesets used for prediction, only 10, representing 8 genes, were commonly changed after both co-culture systems. These could present favorable target for therapy. Global gene expression profiling of osteoclasts (OCs) before and after co-culture with primary multiple myeloma plasma cells (MMPCs) was done using Affymetrix microarrays. Eight MMPC and OC co-culture experiments were performed using MMPC isolated from 8 patients and OC prepared from 8 different patients.
Project description:To understand how interactions of myeloma cells with osteoclasts and mesenchymal stem cells in the bone marrow affect the clinical course of myeloma, we used microarrays to study changes in gene expression in freshly isolated myeloma plasma cells following co-cultures with osteoclasts (8 experiments) or with mesenchymal stem cells (13 experiments). Interaction with osteoclasts induced changes in the expression of 675 genes, and interaction with mesenchymal stem cells induced changes in the expression of 296 genes. Expression of only 58 genes commonly and similarly changed in both co-culture systems. Among these, we identified genes associated with overall, progression-free, and post-relapse survival, and developed survival prediction models. Gene expression data from 347 patients treated with total therapy 2 protocol, 433 with total therapy 3, and 98 patients who received various treatments (91 of them high-dose therapy with autologous stem cell support) were used for the analysis. Good predictive models were developed only for post-relapse survival, using genes involved in interaction with osteoclasts or with mesenchymal stem cells. The best predictive model used expression of first relapse of 33 probesets whose expression changed in myeloma cells following interaction with osteoclasts, with hazard ratios of 24, 20, and 12 for patients who relapsed following total therapy 2, total therapy 3 and the various other treatments, respectively. Among the probesets used for prediction, only 10, representing 8 genes, were commonly changed after both co-culture systems. These could present favorable target for therapy. Global gene expression profiling of osteoclasts (OCs) before and after co-culture with primary multiple myeloma plasma cells (MMPCs) was done using Affymetrix microarrays.