Ontology highlight
ABSTRACT: Soil contamination with heavy metals, particularly lead (Pb) and cadmium (Cd), has become a growing environmental concern due to rapid industrialization. Salix matsudana, a woody energy plant with notable tolerance to heavy metals, exhibits considerable potential for use in phytoremediation. Although nitrogen (N) fertilization is known to promote the growth of S. matsudana, its dual role in enhancing plant development and improving soil conditions remains insufficiently understood. In this study, we systematically examined the effects of varying nitrogen fertilizer concentrations on the growth of S. matsudana, heavy metal uptake, and rhizosphere soil characteristics through integrated physiological and multi-omics approaches. Our findings revealed that high nitrogen levels significantly increased plant biomass and the accumulation of Pb and Cd compared to control conditions. Detailed physiological analyses demonstrated enhanced heavy metal absorption in roots under nitrogen fertilization. Microbial community analysis further indicated that nitrogen application altered rhizosphere microbial activity, particularly enriching bacterial taxa associated with metal mobilization. Metabolomic profiling corroborated improvements in soil quality, showing significant changes in organic acid metabolites involved in metal chelation. These results provide new insights into the mechanisms by which nitrogen fertilization synergistically enhances both the growth of S. matsudana and the efficiency of soil remediation, offering valuable guidance for optimizing phytoremediation strategies in heavy metal-contaminated environments.
INSTRUMENT(S): Liquid Chromatography MS - negative - reverse phase, Liquid Chromatography MS - positive - reverse phase
PROVIDER: MTBLS12749 | MetaboLights | 2025-07-19
REPOSITORIES: MetaboLights
Items per page: 5 1 - 5 of 6 |