Metabolomics

Dataset Information

0

TFAM loss induces nuclear actin assembly upon mDia2 malonylation to promote liver cancer metastasis


ABSTRACT: The mechanisms underlying cancer metastasis remain poorly understood. Here, we report that TFAM deficiency rapidly and stably induced spontaneous lung metastasis in mice with liver cancer. Interestingly, unexpected polymerization of nuclear actin was observed in TFAM-knockdown HCC cells when cytoskeleton was examined. Polymerization of nuclear actin is causally linked to the high-metastatic ability of HCC cells by modulating chromatin accessibility and coordinating the expression of genes associated with extracellular matrix remodeling, angiogenesis, and cell migration. Mechanistically, TFAM deficiency blocked the TCA cycle and increased the intracellular malonyl-CoA levels. Malonylation of mDia2, which drives actin assembly, promotes its nuclear translocation. Importantly, inhibition of malonyl-CoA production or nuclear actin polymerization significantly impeded the spread of HCC cells in mice. Moreover, TFAM was significantly downregulated in metastatic HCC tissues and was associated with overall survival and time to tumor recurrence of HCC patients. Taken together, our study connects mitochondria to the metastasis of human cancer via uncovered mitochondria-to-nucleus retrograde signaling, indicating that TFAM may serve as an effective target to block HCC metastasis.

INSTRUMENT(S): Liquid Chromatography MS - alternating - hilic

SUBMITTER: DAN WU 

PROVIDER: MTBLS4307 | MetaboLights | 2022-06-23

REPOSITORIES: MetaboLights

altmetric image

Publications

TFAM loss induces nuclear actin assembly upon mDia2 malonylation to promote liver cancer metastasis.

Huang Qichao Q   Wu Dan D   Zhao Jing J   Yan Zeyu Z   Chen Lin L   Guo Shanshan S   Wang Dalin D   Yuan Chong C   Wang Yinping Y   Liu Xiaoli X   Xing Jinliang J  

The EMBO journal 20220422 11


The mechanisms underlying cancer metastasis remain poorly understood. Here, we report that TFAM deficiency rapidly and stably induced spontaneous lung metastasis in mice with liver cancer. Interestingly, unexpected polymerization of nuclear actin was observed in TFAM-knockdown HCC cells when cytoskeleton was examined. Polymerization of nuclear actin is causally linked to the high-metastatic ability of HCC cells by modulating chromatin accessibility and coordinating the expression of genes associ  ...[more]

Similar Datasets

2024-01-01 | GSE197830 | GEO
2024-01-01 | GSE197597 | GEO
2016-04-14 | E-GEOD-72319 | biostudies-arrayexpress
2020-03-28 | BIOMD0000000926 | BioModels
2022-06-01 | GSE196991 | GEO
2022-10-28 | GSE216695 | GEO
2022-06-01 | GSE197134 | GEO
2022-06-01 | GSE196992 | GEO
2016-04-14 | GSE72319 | GEO
2022-10-06 | ST002341 | MetabolomicsWorkbench