Metabolomics

Dataset Information

0

Natural polymorphism of ZmICE1 contributes to amino acid metabolism that impacts cold tolerance in maize


ABSTRACT:

Cold stress negatively affects maize (Zea mays L.) growth, development and yield. Metabolic adjustments contribute to the adaptation of maize under cold stress. We show here that the transcription factor INDUCER OF CBF EXPRESSION 1 (ZmICE1) plays a prominent role in reprogramming amino acid metabolome and COLD-RESPONSIVE (COR) genes during cold stress in maize. Derivatives of amino acids glutamate/asparagine (Glu/Asn) induce a burst of mitochondrial reactive oxygen species, which suppress the cold-mediated induction of DEHYDRATION RESPONSE ELEMENT-BINDING PROTEIN 1 (ZmDREB1) genes and impair cold tolerance. ZmICE1 blocks this negative regulation of cold tolerance by directly repressing the expression of the key Glu/Asn biosynthesis genes, ASPARAGINE SYNTHETASEs. Moreover, ZmICE1 directly regulates the expression of DREB1s. Natural variation at the ZmICE1 promoter determines the binding affinity of the transcriptional activator ZmMYB39, a positive regulator of cold tolerance in maize, resulting in different degrees of ZmICE1 transcription and cold tolerance across inbred lines. This study thus unravels a mechanism of cold tolerance in maize and provides potential targets for engineering cold-tolerant varieties.

INSTRUMENT(S): Liquid Chromatography MS - positive - reverse phase

SUBMITTER: Zijia Yang 

PROVIDER: MTBLS4404 | MetaboLights | 2022-10-31

REPOSITORIES: MetaboLights

Similar Datasets

2005-10-01 | GSE3326 | GEO
2007-07-13 | E-GEOD-3326 | biostudies-arrayexpress
2016-06-30 | E-GEOD-63185 | biostudies-arrayexpress
2016-06-30 | E-GEOD-63184 | biostudies-arrayexpress
2014-10-02 | PXD001216 | Pride
2016-06-30 | GSE63185 | GEO
2016-06-30 | GSE63184 | GEO
2019-09-07 | GSE137002 | GEO
2021-02-11 | GSE166543 | GEO
2023-11-19 | GSE247749 | GEO