Metabolomics

Dataset Information

0

Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents


ABSTRACT:

OBJECTIVE: Patients with renal failure suffer from symptoms caused by uraemic toxins, possibly of gut microbial origin, as deduced from studies in animals. The aim of the study is to characterise relationships between the intestinal microbiome composition, uraemic toxins and renal failure symptoms in human end-stage renal disease (ESRD).

DESIGN: Characterisation of gut microbiome, serum and faecal metabolome and human phenotypes in a cohort of 223 patients with ESRD and 69 healthy controls. Multidimensional data integration to reveal links between these datasets and the use of chronic kidney disease (CKD) rodent models to test the effects of intestinal microbiome on toxin accumulation and disease severity.

RESULTS: A group of microbial species enriched in ESRD correlates tightly to patient clinical variables and encode functions involved in toxin and secondary bile acids synthesis; the relative abundance of the microbial functions correlates with the serum or faecal concentrations of these metabolites. Microbiota from patients transplanted to renal injured germ-free mice or antibiotic-treated rats induce higher production of serum uraemic toxins and aggravated renal fibrosis and oxidative stress more than microbiota from controls. Two of the species, Eggerthella lenta and Fusobacterium nucleatum, increase uraemic toxins production and promote renal disease development in a CKD rat model. A probiotic Bifidobacterium animalis decreases abundance of these species, reduces levels of toxins and the severity of the disease in rats.

CONCLUSION: Aberrant gut microbiota in patients with ESRD sculpts a detrimental metabolome aggravating clinical outcomes, suggesting that the gut microbiota will be a promising target for diminishing uraemic toxicity in those patients.

INSTRUMENT(S): Liquid Chromatography MS - Negative (LC-MS (Negative)), Gas Chromatography MS - Positive (GC-MS (Positive)), Liquid Chromatography MS - Positive (LC-MS (Positive))

SUBMITTER: Fazheng Ren 

PROVIDER: MTBLS700 | MetaboLights | 2020-10-20

REPOSITORIES: MetaboLights

altmetric image

Publications

Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents.

Wang Xifan X   Yang Songtao S   Li Shenghui S   Zhao Liang L   Hao Yanling Y   Qin Junjie J   Zhang Lian L   Zhang Chengying C   Bian Weijing W   Zuo Li L   Gao Xiu X   Zhu Baoli B   Lei Xin Gen XG   Gu Zhenglong Z   Cui Wei W   Xu Xiping X   Li Zhiming Z   Zhu Benzhong B   Li Yuan Y   Chen Shangwu S   Guo Huiyuan H   Zhang Hao H   Sun Jing J   Zhang Ming M   Hui Yan Y   Zhang Xiaolin X   Liu Xiaoxue X   Sun Bowen B   Wang Longjiao L   Qiu Qinglu Q   Zhang Yuchan Y   Li Xingqi X   Liu Weiqian W   Xue Rui R   Wu Hong H   Shao DongHua D   Li Junling J   Zhou Yuanjie Y   Li Shaochuan S   Yang Rentao R   Pedersen Oluf Borbye OB   Yu Zhengquan Z   Ehrlich Stanislav Dusko SD   Ren Fazheng F  

Gut 20200402 12


<h4>Objective</h4>Patients with renal failure suffer from symptoms caused by uraemic toxins, possibly of gut microbial origin, as deduced from studies in animals. The aim of the study is to characterise relationships between the intestinal microbiome composition, uraemic toxins and renal failure symptoms in human end-stage renal disease (ESRD).<h4>Design</h4>Characterisation of gut microbiome, serum and faecal metabolome and human phenotypes in a cohort of 223 patients with ESRD and 69 healthy c  ...[more]

Similar Datasets

2024-05-02 | GSE221506 | GEO
2013-08-16 | E-GEOD-41030 | biostudies-arrayexpress
2022-03-12 | GSE198199 | GEO
2013-08-16 | GSE41030 | GEO
2015-08-16 | E-GEOD-66494 | biostudies-arrayexpress
2017-03-31 | PXD004911 | Pride
2022-08-22 | PXD032997 | Pride
2019-05-08 | E-MTAB-7750 | biostudies-arrayexpress
2013-03-01 | E-GEOD-44752 | biostudies-arrayexpress
2024-01-24 | PXD039656 | JPOST Repository