Metabolic Profiling of Visceral and Subcutaneous Adipose Tissue from Colorectal Cancer Patients: UHPLC-QTOF MS analyis of subcutaneous and visceral adipose tissue samples
Project description:Background and aimsAccumulation of visceral adipose tissue is associated with hepatic inflammation and fibrosis, suggestive of its metabolic and inflammatory properties. We aimed to examine the histologic findings of visceral and subcutaneous adipose tissue and to associate these findings with clinical and radiologic characteristics in patients with cirrhosis.MethodsIncluded were 55 adults with cirrhosis who underwent liver transplantation from 3/2017-12/2018 and had an abdominal computed tomography (CT) scan within 6 months prior to transplant. Visceral-to-subcutaneous adipose tissue ratio (VSR) was calculated using visceral (VATI) and subcutaneous adipose tissue index (SATI) quantified by CT at the L3-vertebral level and normalized for height (cm2/m2). VAT (greater omentum), SAT (abdominal wall), and skeletal muscle (rectus abdominis) biopsies were collected at transplant.ResultsMajority of patients had VAT inflammation (71%); only one patient (2%) had SAT inflammation. Patients with VAT inflammation had similar median VATI (42 vs 41 cm2/m2), lower median SATI (64 vs 97 cm2/m2), and higher median VSR (0.63 vs 0.37, p = 0.002) than patients without inflammation. In univariable logistic regression, VSR was associated with VAT inflammation (OR 1.47, 95%CI 1.11-1.96); this association remained significant even after adjusting for age, sex, BMI, HCC, or MELD-Na on bivariable analyses.ConclusionIn patients with cirrhosis undergoing liver transplantation, histologic VAT inflammation was common, but SAT inflammation was not. Increased VSR was independently associated with VAT inflammation. Given the emerging data demonstrating the prognostic value of VSR, our findings support the value of CT-quantified VSR as a prognostic marker for adverse outcomes in the liver transplant setting.
Project description:Obesity is a complex multifactorial phenotype that influences several metabolic pathways. Yet, few studies have examined the relations of different body fat compartments to urinary and serum metabolites. Anthropometric phenotypes (visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), the ratio between VAT and SAT (VSR), body mass index (BMI), waist circumference (WC)) and urinary and serum metabolite concentrations measured by nuclear magnetic resonance spectroscopy were measured in a population-based sample of 228 healthy adults. Multivariable linear and logistic regression models, corrected for multiple testing using the false discovery rate, were used to associate anthropometric phenotypes with metabolites. We adjusted for potential confounding variables: age, sex, smoking, physical activity, menopausal status, estimated glomerular filtration rate (eGFR), urinary glucose, and fasting status. In a fully adjusted logistic regression model dichotomized for the absence or presence of quantifiable metabolite amounts, VAT, BMI and WC were inversely related to urinary choline (ß = -0.18, p = 2.73*10-3), glycolic acid (ß = -0.20, 0.02), and guanidinoacetic acid (ß = -0.12, p = 0.04), and positively related to ethanolamine (ß = 0.18, p = 0.02) and dimethylamine (ß = 0.32, p = 0.02). BMI and WC were additionally inversely related to urinary glutamine and lactic acid. Moreover, WC was inversely associated with the detection of serine. VAT, but none of the other anthropometric parameters, was related to serum essential amino acids, such as valine, isoleucine, and phenylalanine among men. Compared to other adiposity measures, VAT demonstrated the strongest and most significant relations to urinary and serum metabolites. The distinct relations of VAT, SAT, VSR, BMI, and WC to metabolites emphasize the importance of accurately differentiating between body fat compartments when evaluating the potential role of metabolic regulation in the development of obesity-related diseases, such as insulin resistance, type 2 diabetes, and cardiovascular disease.
Project description:There is a link between visceral white adipose tissue (WAT) and the metabolic syndrome in humans, with health improvements produced with small visceral WAT reduction. By contrast, subcutaneous WAT provides a site for lipid storage that is rather innocuous relative to ectopic lipid storage in muscle or liver. The sympathetic nervous system (SNS) is the principal initiator for lipolysis in WAT by mammals. Nothing is known, however, about the central origins of the SNS circuitry innervating the only true visceral WAT in rodents, mesenteric WAT (MWAT), which drains into the hepatic portal vein. We tested whether the central sympathetic circuits to subcutaneous [inguinal WAT (IWAT)] and visceral WAT (MWAT) are separate or shared and whether they possess differential sympathetic drives with food deprivation in Siberian hamsters. Using two isogenic strains of pseudorabies virus, a retrograde transneuronal viral tract tracer within the same hamsters, we found some overlap (∼20-55% doubly infected neurons) between the two circuitries across the neural axis with lesser overlap proximal to the depots (spinal cord and sympathetic chain) and with more neurons involved in the innervation of IWAT than MWAT in some brain regions. Food deprivation triggered a greater sympathetic drive to subcutaneous (IWAT) than visceral (MWAT) depots. Collectively, we demonstrated both shared and separate populations of brain, spinal cord, and sympathetic chain neurons ultimately project to a subcutaneous WAT depot (IWAT) and the only visceral WAT depot in rodents (MWAT). In addition, the lipolytic stimulus of food deprivation only increased SNS drive to subcutaneous fat (IWAT).
Project description:Background:Acute pancreatitis (AP) is a frequent disorder with considerable morbidity and mortality. Obesity has previously been reported to influence disease severity. Objective:The aim of this study was to investigate the association of adipose and muscle parameters with the severity grade of AP. Methods:In total 454 patients were recruited. The first contrast-enhanced computed tomography of each patient was reviewed for adipose and muscle tissue parameters at L3 level. Associations with disease severity were analysed through logistic regression analysis. The predictive capacity of the parameters was investigated using receiver operating characteristic (ROC) curves. Results:No distinct variation was found between the AP severity groups in either adipose tissue parameters (visceral adipose tissue and subcutaneous adipose tissue) or visceral muscle ratio. However, muscle mass and mean muscle attenuation differed significantly with p-values of 0.037 and 0.003 respectively. In multivariate analysis, low muscle attenuation was associated with severe AP with an odds ratio of 4.09 (95% confidence intervals: 1.61-10.36, p-value 0.003). No body parameter presented sufficient predictive capability in ROC-curve analysis. Conclusions:Our results demonstrate that a low muscle attenuation level is associated with an increased risk of severe AP. Future prospective studies will help identify the underlying mechanisms and characterise the influence of body composition parameters on AP.
Project description:PurposeUnderlying mechanisms of the relationship between body fatness and colorectal cancer remain unclear. This study investigated associations of circulating metabolites with visceral (VFA), abdominal subcutaneous (SFA), and total fat area (TFA) in colorectal cancer patients.MethodsPre-surgery plasma samples from 212 patients (stage I-IV) from the ColoCare Study were used to perform targeted metabolomics. VFA, SFA, and TFA were quantified by computed tomography scans. Partial correlation and linear regression analyses of VFA, SFA, and TFA with metabolites were computed and corrected for multiple testing. Cox proportional hazards were used to assess 2-year survival.ResultsIn patients with metastatic tumors, SFA and TFA were statistically significantly inversely associated with 16 glycerophospholipids (SFA: pFDR range 0.017-0.049; TFA: pFDR range 0.029-0.048), while VFA was not. Doubling of ten of the aforementioned glycerophospholipids was associated with increased risk of death in patients with metastatic tumors, but not in patients with non-metastatic tumors (phet range: 0.00044-0.049). Doubling of PC ae C34:0 was associated with ninefold increased risk of death in metastatic tumors (Hazard Ratio [HR], 9.05; 95% confidence interval [CI] 2.17-37.80); an inverse association was observed in non-metastatic tumors (HR 0.17; 95% CI 0.04-0.87; phet = 0.00044).ConclusionThese data provide initial evidence that glycerophospholipids in metastatic colorectal cancer are uniquely associated with subcutaneous adiposity, and may impact overall survival.
Project description:The importance of the involvement of adipose tissue macrophage subpopulations in obesity-related disorders is well known from different animal models, but human data are scarcer. Subcutaneous (n=44) and visceral (n=52) adipose tissues of healthy living kidney donors were obtained during living donor nephrectomy. Stromal vascular fractions were isolated and analysed by flow cytometry using CD14, CD16, CD36 and CD163 antibodies. Total macrophage numbers in subcutaneous adipose tissue increased (P=0.02) with body mass index (BMI), with a similar increase seen in the proportion of phagocytic CD14+CD16+CD36high macrophages (P<0.01). On the other hand, there was an inverse correlation between anti-inflammatory CD14+CD16-CD163+ macrophages (P<0.05) and BMI. These correlations disappeared after excluding obese subjects (BMI ⩾30 kg m-2) from the analysis. Interestingly, none of these subpopulations were significantly related to BMI in visceral adipose tissue. Obesity per se is associated with distinct, highly phagocytic macrophage accumulation in human subcutaneous adipose tissue.
Project description:Previous studies have demonstrated that Fyn knockout (FynKO) mice on a standard chow diet display increased glucose clearance and whole-body insulin sensitivity associated with decreased adiposity resulting from increased fatty acid use and energy expenditure. Surprisingly, however, despite a similar extent of adipose tissue (AT) mass accumulation on a high-fat diet, the FynKO mice remained fully glucose tolerant and insulin sensitive. Physiologic analyses demonstrated that the FynKO mice had a combination of skewed AT expansion into the subcutaneous compartment rather than to the visceral depot, reduced AT inflammation associated with reduced T-cell and macrophage infiltration, and increased proportion of anti-inflammatory M2 macrophages. These data demonstrate that Fyn is an important regulator of whole-body integrative metabolism that coordinates AT expansion, inflammation, and insulin sensitivity in states of nutrient excess. These data further suggest that inhibition of Fyn function may provide a novel target to prevent AT inflammation, insulin resistance, and the dyslipidemia components of the metabolic syndrome.