Distinctly perturbed metabolic networks underlie differential tumor tissue damages induced by immune modulator b-glucan in a two-case ex vivo non-small cell lung cancer study
Project description:Cancer and stromal cell metabolism is important for understanding tumor development, which highly depends on the tumor microenvironment (TME). Cell or animal models cannot recapitulate the human TME. We have developed an ex vivo paired cancerous (CA) and noncancerous (NC) human lung tissue approach to explore cancer and stromal cell metabolism in the native human TME. This approach enabled full control of experimental parameters and acquisition of individual patient's target tissue response to therapeutic agents while eliminating interferences from genetic and physiological variations. In this two-case study of non-small-cell lung cancer, we performed stable isotope-resolved metabolomic (SIRM) experiments on paired CA and NC lung tissues treated with a macrophage activator β-glucan and (13)C6-glucose, followed by ion chromatography-Fourier transform mass spectrometry (IC-FTMS) and nuclear magnetic resonance (NMR) analyses of (13)C-labeling patterns of metabolites. We demonstrated that CA lung tissue slices were metabolically more active than their NC counterparts, which recapitulated the metabolic reprogramming in CA lung tissues observed in vivo. We showed β-glucan-enhanced glycolysis, Krebs cycle, pentose phosphate pathway, antioxidant production, and itaconate buildup in patient UK021 with chronic obstructive pulmonary disease (COPD) and an abundance of tumor-associated macrophages (TAMs) but not in UK049 with no COPD and much less macrophage infiltration. This metabolic response of UK021 tissues was accompanied by reduced mitotic index, increased necrosis, and enhaced inducible nitric oxide synthase (iNOS) expression. We surmise that the reprogrammed networks could reflect β-glucan M1 polarization of human macrophages. This case study presents a unique opportunity for investigating metabolic responses of human macrophages to immune modulators in their native microenvironment on an individual patient basis.
Project description:Intra-tumoral heterogeneity (ITH) is a critical factor leading to aggressive progression and response to immunotherapy in lung adenocarcinoma (LUAD). However, the relationship between ITH and immune cells in the tumor microenvironment (TME) has not been systematically elucidated. In the present study, we evaluated the ITH status of LUAD samples based on the mutational data obtained from The Cancer Genome Atlas database. First, we identified five key immune pathways with a significantly continuous downtrend among normal, low-heterogeneous, and high-heterogeneous samples and further excavated nine key immune cells related to the key immune pathways and tumor heterogeneity. Then, two immune subtypes were defined by a consensus clustering algorithm based on the infiltration of these immune cells. Differences between these two immune subtypes were remarkable, including alterations of tumor mutation burden and DNA copy number variation at the genomic level, various metabolic pathways, and the different clinical outcome, which was also validated in two independent Gene Expression Omnibus datasets. The results revealed that ITH was significantly associated with prognosis and infiltrating immune cells in the TME. Our study provides novel insights in understanding the relationship between ITH and immune cells and contributes to the immunotherapy of LUAD patients.
Project description:Background Immune checkpoint inhibitors (ICIs) possess remarkable clinical effectiveness in non-small cell lung cancer (NSCLC). Different immune profiles of tumors may play a key role in the efficacy of treatment with ICIs. This article aimed to determine the differential organ responses to ICI in individuals with metastatic NSCLC. Methods This research analyzed data of advanced NSCLC patients receiving first-line treatment with ICIs. Major organs such as the liver, lung, adrenal glands, lymph nodes and brain were assessed using the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 and RECIST-improved organ-specific response criteria. Results A retrospective analysis was conducted on a total of 105 individuals with advanced NSCLC with programmed death ligand-1 (PD-L1) expression ≥50% who received single agent anti-programmed cell death protein 1 (PD-1)/PD-L1 monoclonal antibodies as first-line therapy. Overall, 105 (100%), 17 (16.2%), 15 (14.3%), 13 (12.4%), and 45 (42.8%) individuals showed measurable lung tumors and liver, brain, adrenal, and other lymph node metastases at baseline. The median size of the lung, liver, brain, adrenal gland, and lymph nodes were 3.4, 3.1, 2.8, 1.9, and 1.8 cm, respectively. The results recorded mean response times of 2.1, 3.4, 2.5, 3.1, and 2.3 months, respectively. Organ-specific overall response rates (ORRs) were 67%, 30.6%, 34%, 39%, and 59.1%, respectively, with the liver having the lowest remission rate and lung lesions having the highest remission rate. There were 17 NSCLC patients with liver metastasis at baseline, and 6 had different responses to ICI treatment, with remission in the primary lung site and progressive disease (PD) in the metastatic liver site. At baseline, the mean progression-free survival (PFS) of the 17 patients with liver metastasis and 88 patients without liver metastasis was 4.3 and 7 months, respectively (P=0.02, 95% CI: 0.691 to 3.033). Conclusions The liver metastases of NSCLC may be less responsive to ICIs than other organs. The lymph nodes respond most favorably to ICIs. Further strategies may include additional local treatment in case of oligoprogression in these organs in patients with otherwise sustained treatment benefit.
Project description:To date, there are no prognostic/predictive biomarkers to select chemotherapy, immunotherapy, and radiotherapy in individual non-small cell lung cancer (NSCLC) patients. Major immune-checkpoint inhibitors (ICIs) have more DNA copy number variations (CNV) than mutations in The Cancer Genome Atlas (TCGA) NSCLC tumors. Nevertheless, CNV-mediated dysregulated gene expression in NSCLC is not well understood. Integrated CNV and transcriptional profiles in NSCLC tumors (n = 371) were analyzed using Boolean implication networks for the identification of a multi-omics CD27, PD1, and PDL1 network, containing novel prognostic genes and proliferation genes. A 5-gene (EIF2AK3, F2RL3, FOSL1, SLC25A26, and SPP1) prognostic model was developed and validated for patient stratification (p < 0.02, Kaplan-Meier analyses) in NSCLC tumors (n = 1163). A total of 13 genes (COPA, CSE1L, EIF2B3, LSM3, MCM5, PMPCB, POLR1B, POLR2F, PSMC3, PSMD11, RPL32, RPS18, and SNRPE) had a significant impact on proliferation in 100% of the NSCLC cell lines in both CRISPR-Cas9 (n = 78) and RNA interference (RNAi) assays (n = 92). Multiple identified genes were associated with chemoresponse and radiotherapy response in NSCLC cell lines (n = 117) and patient tumors (n = 966). Repurposing drugs were discovered based on this immune-omics network to improve NSCLC treatment.
Project description:Tumor Treating Fields (TTFields) are electric fields that exert physical forces to disrupt cellular processes critical for cancer cell viability and tumor progression. TTFields induce anti-mitotic effects through the disruption of the mitotic spindle and abnormal chromosome segregation, which trigger several forms of cell death, including immunogenic cell death (ICD). The efficacy of TTFields concomitant with anti-programmed death-1 (anti-PD-1) treatment was previously shown in vivo and is currently under clinical investigation. Here, the potential of TTFields concomitant with anti- PD-1/anti-cytotoxic T-lymphocyte-associated protein 4 (anti-CTLA-4) or anti-programmed death-ligand 1 (anti-PD-L1) immune checkpoint inhibitors (ICI) to improve therapeutic efficacy was examined in lung tumor-bearing mice. Increased circulating levels of high mobility group box 1 protein (HMGB1) and elevated intratumoral levels of phosphorylated eukaryotic translation initiation factor 2α (p-eIF2α) were found in the TTFields-treated mice, indicative of ICD induction. The concomitant application of TTFields and ICI led to a significant decrease in tumor volume as compared to all other groups. In addition, significant increases in the number of tumor-infiltrating immune cells, specifically cytotoxic T-cells, were observed in the TTFields plus anti-PD-1/anti-CTLA-4 or anti-PD-L1 groups. Correspondingly, cytotoxic T-cells isolated from these tumors showed higher levels of IFN-γ production. Collectively, these results suggest that TTFields have an immunoactivating role that may be leveraged for concomitant treatment with ICI to achieve better tumor control by enhancing antitumor immunity.
Project description:NSCLC is a very aggressive solid tumor, with a poor prognosis due to post-surgical recurrence. Analysis of the specific tumor and immune signatures of NSCLC samples is a critical step in prognostic evaluation and management decisions for patients after surgery. Routine histological assays have some limitations. Therefore, new diagnostic tools with the capability to quickly recognize NSCLC subtypes and correctly identify various markers are needed. We developed a technique for ex vivo isolation of cancer and immune cells from surgical tumor and lung tissue samples of patients with NSCLC (adenocarcinomas and squamous cell carcinomas) and their examination on ex vivo cell preparations and, parallelly, on histological sections after Romanovsky-Giemsa and immunofluorescent/immunochemical staining for cancer-specific and immune-related markers. As a result, PD-L1 expression was detected for some patients only by ex vivo analysis. Immune cell profiling in the tumor microenvironment revealed significant differences in the immunological landscapes between the patients' tumors, with smokers' macrophages with simultaneous expression of pro- and anti-inflammatory cytokines, neutrophils, and eosinophils being the dominant populations. The proposed ex vivo analysis may be used as an additional diagnostic tool for quick examination of cancer and immune cells in whole tumor samples and to avoid false negatives in histological assays.
Project description:Despite the initial successes of immunotherapy, there is an urgent clinical need for molecular assays that identify patients more likely to respond. Here, we report that ultrasensitive measures of circulating tumor DNA (ctDNA) and T-cell expansion can be used to assess responses to immune checkpoint blockade in metastatic lung cancer patients (N = 24). Patients with clinical response to therapy had a complete reduction in ctDNA levels after initiation of therapy, whereas nonresponders had no significant changes or an increase in ctDNA levels. Patients with initial response followed by acquired resistance to therapy had an initial drop followed by recrudescence in ctDNA levels. Patients without a molecular response had shorter progression-free and overall survival compared with molecular responders [5.2 vs. 14.5 and 8.4 vs. 18.7 months; HR 5.36; 95% confidence interval (CI), 1.57-18.35; P = 0.007 and HR 6.91; 95% CI, 1.37-34.97; P = 0.02, respectively], which was detected on average 8.7 weeks earlier and was more predictive of clinical benefit than CT imaging. Expansion of T cells, measured through increases of T-cell receptor productive frequencies, mirrored ctDNA reduction in response to therapy. We validated this approach in an independent cohort of patients with early-stage non-small cell lung cancer (N = 14), where the therapeutic effect was measured by pathologic assessment of residual tumor after anti-PD1 therapy. Consistent with our initial findings, early ctDNA dynamics predicted pathologic response to immune checkpoint blockade. These analyses provide an approach for rapid determination of therapeutic outcomes for patients treated with immune checkpoint inhibitors and have important implications for the development of personalized immune targeted strategies.Significance: Rapid and sensitive detection of circulating tumor DNA dynamic changes and T-cell expansion can be used to guide immune targeted therapy for patients with lung cancer.See related commentary by Zou and Meyerson, p. 1038.
Project description:BackgroundLong noncoding RNAs (lncRNAs) play a key role in the development and progression of many cancer types, including lung cancer. The objective of this study is to examine the function and molecular mechanism of lncRNAs involved in non-small cell lung cancer (NSCLC).MethodsFirst, 7 lung cancer-related differentially expressed LncRNAs were screened from 2 genomic profiling datasets. Of these lncRNAs, FOXF1 adjacent noncoding developmental regulatory RNA (FENDRR) was found to be the only one that was both significantly down-regulated in the patients with advanced pathology and negatively correlated with prognosis. Thus, lncRNA FENDRR was further studied in this project. Clinical correlation analysis was further conducted in the GSE30219 dataset and 73 paired lung cancer and noncancerous tissues stored in our lab; Subsequently, we evaluated FENDRR coding potential with the Phylogenetic Codon Substitution Frequencies (PhyloCSF), Coding-Potential Assessment Tool (CPAT), and Coding Potential Calculator (CPC) online analytical tool. The cell growth ability was measured by CCK8 assay and clonogenicity assay, the metastatic capacities were evaluated using Transwell migration and invasion assays. Mechanistically, we analyzed the correlation of FENDRR function in NSCLC with immune response by utilizing The Cancer Genome Atlas (TCGA) data.ResultsResults indicated a negative clinical correlation of FENDRR. Coding potential analysis showed FENDRR as a noncoding RNA. Elevated expression of FENDRR led to cell growth arrest, inhibition of proliferative ability, declined migration and invasion potential of NSCLC cells in vitro. Mechanistically, we discovered that FENDRR expression might be involved in aberrant immune response regulation.ConclusionsTaken together, our results provide a greater understanding of lncRNA FENDRR as a tumor suppressor with respect to tumor-immune interactions in NSCLC.
Project description:Pembrolizumab is an immune checkpoint inhibitor (ICI), currently recommended as the first-line treatment for patients with advanced non-small-cell lung cancer (NSCLC) showing ?50% expression of programmed death-ligand 1 (PD-L1). Previously it was reported that platinum-based chemotherapy may change PD-L1 expression in solid cancers. However, no reports addressing alteration of PD-L1 expression after ICI therapy in NSCLC are available so far. The patients were Japanese males 83 and 87 years old, who were diagnosed with NSCLC based on the transbronchial lung biopsies showing sarcomatoid feature with high PD-L1 expression. They received Pembrolizumab, however, passed away with disease progression on day 27 and day 9, respectively. PD-L1, PD1, and CD8 antibodies were applied to pretreatment tumor biopsies and autopsy specimens. Immunoexpression of all the markers was evaluated using Aperio ImageScope. We found that PD-L1 expression decreased significantly from 75.6% to 13.2% and from 100% to 58.8%, in patients 1 and 2, respectively. This alteration was less prominent in the perinecrotic tumor area. A considerable decrease of PD-L1 score was linked with a little effect of Pembrolizumab in our patients. This association might be one of the contributing mechanisms of resistance to ICI and needs further investigation in large-scale studies.
Project description:Using primary cells isolated from Marchf1-/- and Marchf8-/- mice, we have undertaken extensive analysis of MARCH1 and MARCH8 E3 Ub ligases in an array of primary haemopoietic and non-haemopoietic cell types including traditional and non-traditional antigen presenting cells (APCs). Using flow cytometry and proteomic analysis of plasma membrane (PM) and intracellular compartments (IC), we describe unique roles for MARCH1 and MARCH 8 in haemopoietic cells and non-haemopoietic cells respectively to redefine a panel of substrates for these E3 Ub ligases in primary immune cells.