Project description:Type 1 diabetes (T1D) is a chronic T-cell-mediated autoimmune disease, leading to the destruction of the pancreatic insulin-producing beta cells. Little is known about the involvement of neutrophils that exert multifaceted functions like phagocytosis, degranulation, production of cytokines and the formation of neutrophil extracellular traps (NETosis), in the pathogenesis of T1D. Our aim was to gain insight into the proteome of neutrophils undergoing NETosis from patients with long-standing T1D compared to age- and sex-matched healthy controls under both resting and stimulated conditions (phorbol-myristate acetate, PMA, 100nM; ionomycin, 20µM; 3hours) by LC/MS-MS.
Project description:Glucose-dependent insulinotropic polypeptide (GIP) has been proposed to exert insulin-independent effects on lipid and bone metabolism. We investigated the effect of a 6-day s.c. GIP infusion on circulating lipids, white adipose tissue (WAT), brown adipose tissue (BAT), hepatic fat content, and inflammatory markers in patients with type 1 diabetes. In a randomized, placebo-controlled, double-blind, crossover study, 20 men with type 1 diabetes underwent a 6-day continuous s.c. infusion with GIP (6 pmol/kg/min) and placebo (saline), with an interposed seven-day washout period. Each intervention period involved three study days: Day 0 (baseline measurements, a baseline abdominal adipose tissue biopsy and blood sampling), Day 1 (fasting blood sample after 24 hours infusion), and Day 6 (fasting blood sample, an abdominal adipose tissue biopsy).
Project description:Objective: Rates of type 2 diabetes (T2D) among adolescents are on the rise. Epigenetic changes could be associated with the
metabolic alterations in adolescents with T2D.
Methods: We performed a cross-sectional integrated analysis of DNA methylation data from peripheral blood mononuclear cells
with serum metabolomic data from First Nation adolescents with T2D and controls participating in the Improving Renal
Complications in Adolescents with type 2 diabetes through REsearch (iCARE) cohort study, to explore the molecular changes in
adolescents with T2D.
Results: Our analysis showed that 43 serum metabolites and 36 differentially methylated regions (DMR) were associated with T2D. Several DMRs were located near the transcriptional start site of genes with established roles in metabolic disease and associated with altered serum metabolites (e.g. glucose, leucine, and gamma-glutamylisoleucine). These included the free fatty acid receptor-1 (FFAR1), upstream transcription factor-2 (USF2), and tumor necrosis factor-related protein-9 (C1QTNF9), among others.
Conclusions: We identified DMRs and metabolites that merit further investigation to determine their significance in controlling
gene expression and metabolism which could define T2D risk in adolescents.
Project description:We report for the first time movement of Correia Repeat Enclosed Elements, through inversion of the element at its chromosomal location. Analysis of Ion Torrent generated genome sequence data from Neisseria gonorrhoeae strain NCCP11945 passaged for 8 weeks in the laboratory under standard conditions and stress conditions revealed a total of 37 inversions: 24 were exclusively seen in the stressed sample; 7 in the control sample; and the remaining 3 were seen in both samples. These inversions have the capability to alter gene expression in N. gonorrhoeae through the previously determined activities of the sequence features of these elements. In addition, the locations of predicted non-coding RNAs were investigated to identify potential associations with CREE. Associations varied between strains, as did the number of each element identified. The analysis indicates a role for CREE in disrupting ancestral regulatory networks, including non-coding RNAs. RNA-Seq was used to examine expression changes related to Correia repeats in the strain
Project description:The prevalence of diabetes type 1 (T1D) in the world populations is continuously growing. Although treatment methods are improving, the diagnostic is still symptom-based and sometimes far after onset of the disease. In this context, the aim of the study was the search of new biomarkers of the disease in red blood cells (RBCs), until now unexplored. The metabolomic and the lipidomic profile of RBCs from T1D patients and matched healthy controls was determined by NMR spectroscopy, and different multivariate discrimination models were built to select the metabolites and lipids that change most significantly. Relevant metabolites were further confirmed by univariate statistical analysis. Robust separation in the metabolomic and lipidomic profiles of RBCs from patients and controls was confirmed by orthogonal projection on latent structure discriminant analysis (OPLS-DA), random forest analysis, and significance analysis of metabolites (SAM). The main changes were detected in the levels of amino acids, organic acids, creatine and phosphocreatine, lipid change length, and choline derivatives, demonstrating changes in glycolysis, BCAA metabolism, and phospholipid metabolism. Our study proves that robust differences exist in the metabolic and lipidomic profile of RBCs from T1D patients, in comparison with matched healthy individuals. Some changes were similar to alterations found already in RBCs of T2D patients, but others seemed to be specific for type 1 diabetes. Thus, many of the metabolic differences found could be biomarker candidates for an earlier diagnosis or monitoring of patients with T1D.
Project description:Here we studied plasma metabolomic profiles as determinants of progression to end-stage renal disease (ESRD) in patients with type 2 diabetes (T2D). This nested case-control study evaluated 40 cases who progressed to ESRD during 8-12 years of follow-up and 40 controls who remained alive without ESRD from the Joslin Kidney Study cohort. Controls were matched with cases for baseline clinical characteristics, although controls had slightly higher eGFR and lower levels of urinary albumin excretion than cases. Plasma metabolites at baseline were measured by mass spectrometry-based global metabolomic profiling. Of the named metabolites in the library, 262 were detected in at least 80% of the study patients. The metabolomic platform recognized 78 metabolites previously reported to be elevated in ESRD (uremic solutes). Sixteen were already elevated in the baseline plasma of our cases years before ESRD developed. Other uremic solutes were either not different or not commonly detectable. Essential amino acids and their derivatives were significantly depleted in the cases, whereas certain amino acid-derived acylcarnitines were increased. All findings remained statistically significant after adjustment for differences between study groups in albumin excretion rate, eGFR, or HbA1c. Uremic solute differences were confirmed by quantitative measurements. Thus, abnormal plasma concentrations of putative uremic solutes and essential amino acids either contribute to progression to ESRD or are a manifestation of an early stage(s) of the disease process that leads to ESRD in T2D.
Project description:Protein misfolding is a contributor to the development of type 2 diabetes (T2D), but it is unknown whether impaired proteostasis in T2D is generalized or has special features. Here, we report a robust accumulation of misfolded proteins within the mitochondria of human pancreatic islets from patients with T2D and elucidate its impact on β cell viability. Quantitative proteomics studies of protein aggregates surprisingly reveal that islets from donors with T2D have a signature more closely resembling mitochondrial rather than ER protein misfolding. Loss of the matrix protease LONP1, a vital component of the mitochondrial proteostatic machinery whose expression is reduced in β cells of donors with T2D, yields mitochondrial protein misfolding and reduced respiratory function, ultimately leading to β cell apoptosis and hyperglycemia. Intriguingly, LONP1 gain of function ameliorates mitochondrial protein misfolding and restores human β cell survival following glucolipotoxicity via a protease-independent effect requiring LONP1-mtHSP70 chaperone activity. Thus, LONP1 promotes β cell survival and prevents hyperglycemia by facilitating mitochondrial protein folding. These observations open novel insights into the nature of proteotoxicity that promotes β cell loss during the pathogenesis of T2D that could be considered as future therapeutic targets.
Project description:The type I JAK inhibitor ruxolitinib is approved for therapy of MPN patients but evokes resistance with longer exposure. Several novel type I JAK inhibitors were studied and we show that they uniformly induce resistance via a shared mechanism of JAK family heterodimer formation.Here we studied the expression profiles of SET2 cell lines persistent to several different type I JAK inhibitors in comparison to naive SET2 cells or in comparison to SET2 cells with acute exposure to ruxolitinib. Analysis of RNA isolated from several type I JAK inhibitor SET2 cell lines in comparison to naïve SET2 cells
Project description:In order to determine whether dis-regulation of a genetic pathway could explain the increased apoptosis of parp-2-/- double positive thymocytes, the gene expression profiles in double positive thymocytes derived from wild-type and parp-2-/- mice were analysed using Affymetrix oligonucleotide chips (mouse genome 430 2.0).
Project description:Coronary artery disease (CAD) is a common complication of type 2 diabetes mellitus (T2D). This case-control study was done to identify metabolites with different concentrations between T2D patients with and without CAD and to characterise implicated metabolic mechanisms relating to CAD. Fasting serum samples of 57 T2D subjects, 26 with (cases) and 31 without CAD (controls), were targeted for metabolite profiling of 163 metabolites. To assess the association between metabolite levels and CAD, partial least squares (PLS) analysis and multivariate logistic regression analysis with adjustment for CAD risk factors and medications were performed. We observed a separation of cases and controls with two classes of metabolites being significantly associated with CAD, including phosphatidylcholines, and serine. Four metabolites being independent from the common CAD risk factors displaying best separation between cases and controls were further selected. Addition of the metabolite concentrations to risk factor analysis raised the area under the receiver-operating-characteristic curve from 0.72 to 0.88 (p = 0.020), providing improved sensitivity and specificity for CAD classification. Serum phospholipid and serine levels independently discriminate T2D patients with and without CAD. Oxidative stress and reduced antioxidative capacity lead to lower metabolite concentrations probably due to changes in membrane composition and accelerated phospholipid degradation.