Project description:High dietary sodium intake triggers increased blood pressure (BP). Animal studies show that dietary salt loading results in dermal Na+ accumulation and lymphangiogenesis mediated by VEGF-C (vascular endothelial growth factor C), both attenuating the rise in BP. Our objective was to determine whether these mechanisms function in humans. We assessed skin electrolytes, BP, and plasma VEGF-C in 48 healthy participants randomized to placebo (70 mmol sodium/d) and slow sodium (200 mmol/d) for 7 days. Skin Na+ and K+ concentrations were measured in mg/g of wet tissue and expressed as the ratio Na+:K+ to correct for variability in sample hydration. Skin Na+:K+ increased between placebo and slow sodium phases (2.91±0.08 versus 3.12±0.09; P=0.01). In post hoc analysis, there was a suggestion of a sex-specific effect, with a significant increase in skin Na+:K+ in men (2.59±0.09 versus 2.88±0.12; P=0.008) but not women (3.23±0.10 versus 3.36±0.12; P=0.31). Women showed a significant increase in 24-hour mean BP with salt loading (93±1 versus 91±1 mm Hg; P<0.001) while men did not (96±2 versus 96±2 mm Hg; P=0.91). Skin Na+:K+ correlated with BP, stroke volume, and peripheral vascular resistance in men but not in women. No change was noted in plasma VEGF-C. These findings suggest that the skin may buffer dietary Na+, reducing the hemodynamic consequences of increased salt, and this may be influenced by sex.
Project description:BackgroundTo identify novel metabolites associated with salt sensitivity of blood pressure (SSBP) in Chinese Han population.MethodsA case-control study was conducted with 25 salt sensitive (SS) and 26 salt resistant (SR) participants, which was selected from the Systems Epidemiology Study on Salt Sensitivity of Blood Pressure (EpiSS) study. The modified Sullivan's acute oral saline load and diuresis shrinkage test (MSAOSL-DST) was conducted to identify SS. Untargeted, ultra-high performance liquid chromatograph-high resolution mass spectrometer (UPLC-HRMS) was conducted and orthogonal partial least squares-discriminate analysis (OPLS-DA) and multivariable logistic regression model were used to screen the metabolites related to SS, mixed linear regressions models were used to examined the association of SSBP with metabolites during saline load period and diuresis shrinkage period. Receiver operating characteristic (ROC) curve analysis was performed. The area under the curve's (AUC) sensitivity and specificity were calculated to identified metabolites biomarkers for SS.ResultsThere were 39 differentially expressed metabolites (DE-metabolites) between SS and SR. Thirty-five and four of DE-metabolites were inversely or positively associated with SS, respectively. Four biochemical pathways demonstrated significant enrichment for identified metabolites. In single-metabolite analyses, L-Glutamine displayed the best diagnostic performance (AUC = 0.88, 95% CI: 0.78-0.97). In multi-metabolites analyses, L-Glutamine + Cholesterol ester 22:5n6 combination showed the best diagnostic performance (AUC = 0.96, 95% CI: 0.91-1.00). Adjusted for traditional risk factors, L-Glutamine and Cholesterol ester 22:5n6 explained an additional 38.3% of SS susceptibility.ConclusionsThis study provide potential evidence for clarifying the mechanism of SS and provide novel biological insights into salt sensitive hypertension.
Project description:The aim of this study was to estimate the effects of dietary salt reduction on blood pressure (BP) in Chinese adults and the effects of China-specific cooking salt-reduction strategies (the use of salt substitutes and salt-restriction spoons). The PubMed and China National Knowledge Infrastructure databases were searched for studies satisfying the search criteria. Outcomes extracted from each included study were 24-h urinary sodium excretion, salt (sodium chloride) intake, and BP before and after dietary salt lowering. A random-effects meta-analysis was performed, and results were evaluated for evidence of publication bias and heterogeneity. Because most studies aggregated results for hypertensive and normotensive participants, estimates were made for hypertensive participants only and for hypertensive and normotensive participants combined. Six salt-restriction experiment studies (3,153 participants), 4 cooking salt-restriction spoon studies (3,715 participants), and 4 cooking salt-substitute studies (1,730 participants) were analyzed. In salt-restriction experiment studies, the pooled estimate of mean change in 24-h urinary sodium excretion in hypertensive participants was -163.0 mmol/day (95% confidence interval [CI]: -233.5 to -92.5 mmol/day), which was associated with a mean reduction of -8.9 mm Hg (95% CI: -14.1 to -3.7 mm Hg) in systolic BP. Each 1.00-g dietary salt reduction in hypertensive participants was associated with a reduction of 0.94 mm Hg in systolic BP (95% CI: 0.69 to 1.03 mm Hg). These systolic BP reductions in hypertensive participants were 1.71 times greater compared with the mixed hypertensive and normotensive group. Salt-restriction spoon studies demonstrated a 1.46-g decrease in daily salt intake level. The effect of salt-substitute use on systolic BP control was substantial among the hypertensive participants (-4.2 mm Hg; 95% CI: -7.0 to -1.3 mm Hg), but the change did not reach statistical significance in hypertensive and normotensive participants combined (-2.31 mm Hg; 95% CI: -5.57 to 0.94 mm Hg). Salt restriction lowers mean BP in Chinese adults, with the strongest effect among hypertensive participants. Future studies of salt-restriction strategies should be report results stratified by hypertension status and adjust for medication use.