Project description:Macrophages from wild type or knockout mice with various treatments [none, BSA (control), palmitate + oleate, conditioned media from adipocytes treated with either BSA or palmitate + oleate). N=4/group.
Project description:Metabolomics data from E. Coli Nissle (wild type, WT) and 3 E. Coli Nissle knockout (KO) strains grown in M-9 media and enriched M-9 media.
Project description:By using a microarray screen to compare gene responses after sterile laser wounding of wild-type and 'macrophageless' serpent mutant Drosophila embryos, we show the wound-induced programmes that are independent of a pathogenic response and distinguish which of the genes are macrophage dependent. The evolutionarily conserved nature of this response is highlighted by our finding that one such new inflammation-associated gene, growth arrest and DNA damage-inducible gene 45 (GADD45), is upregulated in both Drosophila and murine repair models. Comparison of unwounded wild-type and serpent mutant embryos also shows a portfolio of 'macrophage-specific' genes, which suggest analogous functions with vertebrate inflammatory cells. Besides identifying the various classes of wound- and macrophage-related genes, our data indicate that sterile injury per se, in the absence of pathogens, triggers induction of a 'pathogen response', which might prime the organism for what is likely to be an increased risk of infection.
Project description:Metabolomics data from E. Coli Nissle (wild type, WT) and 3 E. Coli Nissle knockout (KO) strains grown in M-9 media and enriched M-9 media.
Project description:Specialized pro-resolving mediators (SPMs) and especially Resolvin E1 (RvE1) can actively terminate inflammation and promote healing during lung diseases such as acute respiratory distress syndrome (ARDS). Although ARDS primarily affects the lung, many ARDS patients also develop neurocognitive impairments. To investigate the connection between the lung and brain during ARDS and the therapeutic potential of SPMs and its derivatives, fat-1 mice were crossbred with RvE1 receptor knockout mice. ARDS was induced in these mice by intratracheal application of lipopolysaccharide (LPS, 10 µg). Mice were sacrificed at 0 h, 4 h, 24 h, 72 h, and 120 h post inflammation, and effects on the lung, liver, and brain were assessed by RT-PCR, multiplex, immunohistochemistry, Western blot, and LC-MS/MS. Protein and mRNA analyses of the lung, liver, and hypothalamus revealed LPS-induced lung inflammation increased inflammatory signaling in the hypothalamus despite low signaling in the periphery. Neutrophil recruitment in different brain structures was determined by immunohistochemical staining. Overall, we showed that immune cell trafficking to the brain contributed to immune-to-brain communication during ARDS rather than cytokines. Deficiency in RvE1 receptors and enhanced omega-3 polyunsaturated fatty acid levels (fat-1 mice) affect lung-brain interaction during ARDS by altering profiles of several inflammatory and lipid mediators and glial activity markers.
Project description:mRNA levels in Wild-type versus ddm1 Arabidopsis thaliana seedlings and bolting plants. Features found to be significantly enriched for DNA methylation were determined. This SuperSeries is composed of the SubSeries listed below.
Project description:microarray was done on Heart tissue from ko and wt MicroRNAs (miRNAs) are genomically encoded small RNAs used by organisms to regulate the dosage of proteins generated from messenger RNA transcripts. The in vivo requirement of specific miRNAs in mammals is unknown, and reliable prediction of mRNA targets remains problematic. Here, we show that miRNA biogenesis in the mouse heart is essential for cardiogenesis. Furthermore, targeted deletion of the muscle-specific miRNA, miR-1-2, revealed numerous functions in the heart, including regulation of cardiac morphogenesis, electrical conduction, and cell cycle control. Analyses of miR-1 complementary sequences in mRNAs upregulated upon miR-1-2 deletion revealed an enrichment of miR-1 "seed matches" and a strong tendency for potential miR-1 binding sites to be located in physically accessible regions. These findings indicate that subtle alteration of miRNA dosage can have profound consequences in mammals and demonstrate the utility of mammalian loss-of-function models in revealing physiologic miRNA targets. Keywords: miRNA