Project description:Breast cancers vary by their origin and specific set of genetic lesions, which gives rise to distinct phenotypes and differential response to targeted and untargeted chemotherapies. To explore the functional differences of different breast cell types, we performed Stable Isotope Resolved Metabolomics (SIRM) studies of one primary breast (HMEC) and three breast cancer cells (MCF-7, MDAMB-231, and ZR75-1) having distinct genotypes and growth characteristics, using 13C6-glucose, 13C-1+2-glucose, 13C5,15N2-Gln, 13C3-glycerol, and 13C8-octanoate as tracers. These tracers were designed to probe the central energy producing and anabolic pathways (glycolysis, pentose phosphate pathway, Krebs Cycle, glutaminolysis, nucleotide synthesis and lipid turnover). We found that glycolysis was not associated with the rate of breast cancer cell proliferation, glutaminolysis did not support lipid synthesis in primary breast or breast cancer cells, but was a major contributor to pyrimidine ring synthesis in all cell types; anaplerotic pyruvate carboxylation was activated in breast cancer versus primary cells. We also found that glucose metabolism in individual breast cancer cell lines differed between in vitro cultures and tumor xenografts, but not the metabolic distinctions between cell lines, which may reflect the influence of tumor architecture/microenvironment.
Project description:PurposeTo conduct an exploratory study to identify mechanisms that differentiate Luminal A (BT474 and MCF-7) and triple-negative (MDA-MB-231 and MDA-MB-468) breast cancer (BCa) cell lines to potentially provide novel therapeutic targets based on differences in energy utilization.MethodsCells were cultured in media containing either [U-13C]-glucose or [U-13C]-glutamine for 48 hours. Conditioned media and cellular extracts were analyzed by 1H and 13C NMR spectroscopy.ResultsMCF-7 cells consumed the most glucose, producing the most lactate, demonstrating the greatest Warburg effect-associated energy utilization. BT474 cells had the highest tricarboxylic acid cycle (TCA) activity. The majority of energy utilization patterns in MCF-7 cells were more similar to MDA-MB-468 cells, while the patterns for BT474 cells were more similar to MDA-MB-231 cells. Compared to the Luminal A cell lines, TNBC cell lines consumed more glutamine and less glucose. BT474 and MDA-MB-468 cells produced high amounts of 13C-glycine from media [U-13C]-glucose which was integrated into glutathione, indicating de novo synthesis.ConclusionsStable isotopic resolved metabolomics using 13C substrates provided mechanistic information about energy utilization that was difficult to interpret using 1H data alone. Overall, cell lines that have different hormone receptor status have different energy utilization requirements, even if they are classified by the same clinical BCa subtype; and these differences offer clues about optimizing treatment strategies.
Project description:Experiments with stable isotope tracers such as 13C and 15N are increasingly used to gain insights into metabolism. However, mass spectrometric measurements of stable isotope labeling experiments should be corrected for the presence of naturally occurring stable isotopes and for impurities of the tracer substrate. Here, we analyzed the effect that such correction has on the data: omitting correction or performing invalid correction can result in largely distorted data, potentially leading to misinterpretation. IsoCorrectoR is the first R-based tool to offer said correction capabilities. It is easy-to-use and comprises all correction features that comparable tools can offer in a single solution: correction of MS and MS/MS data for natural stable isotope abundance and tracer impurity, applicability to any tracer isotope and correction of multiple-tracer data from high-resolution measurements. IsoCorrectoR's correction performance agreed well with manual calculations and other available tools including Python-based IsoCor and Perl-based ICT. IsoCorrectoR can be downloaded as an R-package from: http://bioconductor.org/packages/release/bioc/html/IsoCorrectoR.html .
Project description:We have developed a simple NMR-based method to determine the turnover of nucleotides and incorporation into RNA by stable isotope resolved metabolomics (SIRM) in A549 lung cancer cells. This method requires no chemical degradation of the nucleotides or chromatography. During cell growth, the free ribonucleotide pool is rapidly replaced by de novo synthesized nucleotides. Using [U-13C]-glucose and [U-13C,15N]-glutamine as tracers, we showed that virtually all of the carbons in the nucleotide riboses were derived from glucose, whereas glutamine was preferentially utilized over glucose for pyrimidine ring biosynthesis, via the synthesis of Asp through the Krebs cycle. Incorporation of the glutamine amido nitrogen into the N3 and N9 positions of the purine rings was also demonstrated by proton-detected 15N NMR. The incorporation of 13C from glucose into total RNA was measured and shown to be a major sink for the nucleotides during cell proliferation. This method was applied to determine the metabolic action of an anti-cancer selenium agent (methylseleninic acid or MSA) on A549 cells. We found that MSA inhibited nucleotide turnover and incorporation into RNA, implicating an important role of nucleotide metabolism in the toxic action of MSA on cancer cells.
Project description:We have determined the time course of [U-(13)C]-glucose utilization and transformations in SCID mice via bolus injection of the tracer in the tail vein. Incorporation of (13)C into metabolites extracted from mouse blood plasma and several tissues (lung, heart, brain, liver, kidney, and skeletal muscle) were profiled by NMR and GC-MS, which helped ascertain optimal sampling times for different target tissues. We found that the time for overall optimal (13)C incorporation into tissue was 15-20 min but with substantial differences in (13)C labeling patterns of various organs that reflected their specific metabolism. Using this stable isotope resolved metabolomics (SIRM) approach, we have compared the (13)C metabolite profile of the lungs in the same mouse with or without an orthotopic lung tumor xenograft established from human PC14PE6 lung adenocarcinoma cells. The (13)C metabolite profile shows considerable differences in [U-(13)C]-glucose transformations between the two lung tissues, demonstrating the feasibility of applying SIRM to investigate metabolic networks of human cancer xenograft in the mouse model.
Project description:Amino acids have crucial roles in central metabolism, both anabolic and catabolic. To elucidate these roles, steady-state concentrations of amino acids alone are insufficient, as each amino acid participates in multiple pathways and functions in a complex network, which can also be compartmentalized. Stable Isotope-Resolved Metabolomics (SIRM) is an approach that uses atom-resolved tracking of metabolites through biochemical transformations in cells, tissues, or whole organisms. Using different elemental stable isotopes to label multiple metabolite precursors makes it possible to resolve simultaneously the utilization of these precursors in a single experiment. Conversely, a single precursor labeled with two (or more) different elemental isotopes can trace the allocation of e.g. C and N atoms through the network. Such dual-label experiments however challenge the resolution of conventional mass spectrometers, which must distinguish the neutron mass differences among different elemental isotopes. This requires ultrahigh resolution Fourier transform mass spectrometry (UHR-FTMS). When combined with direct infusion nano-electrospray ion source (nano-ESI), UHR-FTMS can provide rapid, global, and quantitative analysis of all possible mass isotopologues of metabolites. Unfortunately, very low mass polar metabolites such as amino acids can be difficult to analyze by current models of UHR-FTMS, plus the high salt content present in typical cell or tissue polar extracts may cause unacceptable ion suppression for sources such as nano-ESI. Here we describe a modified method of ethyl chloroformate (ECF) derivatization of amino acids to enable rapid quantitative analysis of stable isotope labeled amino acids using nano-ESI UHR-FTMS. This method showed excellent linearity with quantifiable limits in the low nanomolar range represented in microgram quantities of biological specimens, which results in extracts with total analyte abundances in the low to sub-femtomole range. We have applied this method to profile amino acids and their labeling patterns in 13C and 2H doubly labeled PC9 cell extracts, cancerous and non-cancerous tissue extracts from a lung cancer patient and their protein hydrolysates as well as plasma extracts from mice fed with a liquid diet containing 13C6-glucose (Glc). The multi-element isotopologue distributions provided key insights into amino acid metabolism and intracellular pools in human lung cancer tissues in high detail. The 13C labeling of Asp and Glu revealed de novo synthesis of these amino acids from 13C6-Glc via the Krebs cycle, specifically the elevated level of 13C3-labeled Asp and Glu in cancerous versus non-cancerous lung tissues was consistent with enhanced pyruvate carboxylation. In addition, tracking the fate of double tracers, (13C6-Glc + 2H2-Gly or 13C6-Glc + 2H3-Ser) in PC9 cells clearly resolved pools of Ser and Gly synthesized de novo from 13C6-Glc (13C3-Ser and 13C2-Gly) versus Ser and Gly derived from external sources (2H3-Ser, 2H2-Gly). Moreover the complex 2H labeling patterns of the latter were results of Ser and Gly exchange through active Ser-Gly one-carbon metabolic pathway in PC9 cells.
Project description:Stable isotope-resolved metabolomics (SIRM) is a powerful tool for understanding disease. Advances in SIRM techniques have improved isotopic delivery and expanded the workflow from exclusively in vitro applications to in vivo methodologies to study systemic metabolism. Here, we report a simple, minimally-invasive and cost-effective method of tracer delivery to study SIRM in vivo in laboratory mice. Following a brief fasting period, we orally administered a solution of [U-13C] glucose through a blunt gavage needle without anesthesia, at a physiological dose commonly used for glucose tolerance tests (2 g/kg bodyweight). We defined isotopic enrichment in plasma and tissue at 15, 30, 120, and 240 min post-gavage. 13C-labeled glucose peaked in plasma around 15 min post-gavage, followed by period of metabolic decay and clearance until 4 h. We demonstrate robust enrichment of a variety of central carbon metabolites in the plasma, brain and liver of C57/BL6 mice, including amino acids, neurotransmitters, and glycolytic and tricarboxylic acid (TCA) cycle intermediates. We then applied this method to study in vivo metabolism in two distinct mouse models of diseases known to involve dysregulation of glucose metabolism: Alzheimer's disease and type II diabetes. By delivering [U-13C] glucose via oral gavage to the 5XFAD Alzheimer's disease model and the Lepob/ob type II diabetes model, we were able to resolve significant differences in multiple central carbon pathways in both model systems, thus providing evidence of the utility of this method to study diseases with metabolic components. Together, these data clearly demonstrate the efficacy and efficiency of an oral gavage delivery method, and present a clear time course for 13C enrichment in plasma, liver and brain of mice following oral gavage of [U-13C] glucose-data we hope will aid other researchers in their own 13C-glucose metabolomics study design.
Project description:Advances in analytical methodologies, principally nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS), during the last decade have made large-scale analysis of the human metabolome a reality. This is leading to the reawakening of the importance of metabolism in human diseases, particularly cancer. The metabolome is the functional readout of the genome, functional genome, and proteome; it is also an integral partner in molecular regulations for homeostasis. The interrogation of the metabolome, or metabolomics, is now being applied to numerous diseases, largely by metabolite profiling for biomarker discovery, but also in pharmacology and therapeutics. Recent advances in stable isotope tracer-based metabolomic approaches enable unambiguous tracking of individual atoms through compartmentalized metabolic networks directly in human subjects, which promises to decipher the complexity of the human metabolome at an unprecedented pace. This knowledge will revolutionize our understanding of complex human diseases, clinical diagnostics, as well as individualized therapeutics and drug response. In this review, we focus on the use of stable isotope tracers with metabolomics technologies for understanding metabolic network dynamics in both model systems and in clinical applications. Atom-resolved isotope tracing via the two major analytical platforms, NMR and MS, has the power to determine novel metabolic reprogramming in diseases, discover new drug targets, and facilitates ADME studies. We also illustrate new metabolic tracer-based imaging technologies, which enable direct visualization of metabolic processes in vivo. We further outline current practices and future requirements for biochemoinformatics development, which is an integral part of translating stable isotope-resolved metabolomics into clinical reality.
Project description:Lipids comprise diverse classes of compounds that are important for the structure and properties of membranes, as high-energy fuel sources and as signaling molecules. Therefore, the turnover rates of these varied classes of lipids are fundamental to cellular function. However, their enormous chemical diversity and dynamic range in cells makes detailed analysis very complex. Furthermore, although stable isotope tracers enable the determination of synthesis and degradation of complex lipids, the numbers of distinguishable molecules increase enormously, which exacerbates the problem. Although LC-MS-MS (Liquid Chromatography-Tandem Mass Spectrometry) is the standard for lipidomics, NMR can add value in global lipid analysis and isotopomer distributions of intact lipids. Here, we describe new developments in NMR analysis for assessing global lipid content and isotopic enrichment of mixtures of complex lipids for two cell lines (PC3 and UMUC3) using both 13C6 glucose and 13C5 glutamine tracers.