Project description:Elevated Na(+) concentration ([Na(+)]) in the cerebrospinal fluid (CSF) contributes to the development of salt-sensitive hypertension. CSF is formed by the choroid plexus (CP) in cerebral ventricles, and [Na(+)] in CSF is controlled by transporters in CP. Here, we examined the effect of high salt diet on the expression of urea transporters (UTs) in the CP of Dahl S vs Dahl R rats using real time PCR. High salt intake (8%, for 2 weeks) did not alter the mRNA levels of UT-A (encoded by SLC14A2 gene) in the CP of either Dahl S or Dahl R rats. In contrast, the mRNA levels of UT-B (encoded by SLC14A1 gene) were significantly reduced in the CP of Dahl S rats on high salt diet as compared with Dahl R rats or Dahl S rats on normal salt diet. Reduced UT-B expression was associated with increased [Na(+)] in the CSF and elevated mean arterial pressure (MAP) in Dahl S rats treated with high salt diet, as measured by radiotelemetry. High salt diet-induced reduction in UT-B protein expression in the CP of Dahl S rats was confirmed by Western blot. Immunohistochemistry using UT-B specific antibodies demonstrated that UT-B protein was expressed on the epithelial cells in the CP. These data indicate that high salt diet induces elevations in CSF [Na(+)] and in MAP, both of which are associated with reduced UT-B expression in the CP of Dahl S rats, as compared with Dahl R rats. The results suggest that altered UT-B expression in the CP may contribute to an imbalance of water and electrolytes in the CSF of Dahl S rats on high salt diet, thereby leading to alterations in MAP.
Project description:Previous studies have confirmed the clinical efficacy of sacubitril/valsartan (Sac/Val) for the treatment of heart failure with reduced ejection fraction (HFrEF). However, the role of Sac/Val in heart failure with preserved ejection fraction (HFpEF) remains unclear. Sac/Val is a combination therapeutic medicine comprising sacubitril and valsartan that acts as a first angiotensin receptor blocker and neprilysin inhibitor (angiotensin-receptor neprilysin inhibitor (ARNI)). Here, we investigated the role of Sac/Val in high-salt diet-induced HFpEF coupled with vascular injury as well as the underlying mechanism. Rats were fed with high-salt feed, followed by intragastric administration of Sac/Val (68 mg/kg; i.g.). The results of functional tests revealed that a high-salt diet caused pathological injuries in the heart and vascular endothelium, which were significantly reversed by treatment with Sac/Val. Moreover, Sac/Val significantly decreased the levels of fibrotic factors, including type I collagen and type Ⅲ collagen, thus, reducing the ratio of MMP2/TIMP2 while increasing Smad7 levels. Further investigation suggested that Sac/Val probably reversed the effects of high-salt diet-induced HFpEF by inhibiting the activation of the TGF-β1/Smad3 signaling pathway. Thus, treatment with Sac/Val effectively alleviated the symptoms of high-salt diet-induced HFpEF, probably by inhibiting fibrosis via the TGF-β1/Smad3 signaling pathway, supporting the therapeutic potential of Sac/Val for the treatment of HFpEF.
Project description:Low-protein/high carbohydrate (LP/HC) diet promotes metabolic health and longevity in adult human and animal models. However, the complex molecular underpinnings of how LP/HC diet leads to metabolic benefits remain elusive. Through a multi-layered approach, here we observed that LP/HC diet promotes an energy-dissipating response consisting in the parallel recruitment of canonical and non-canonical (muscular) thermogenic systems in subcutaneous adipose tissue (sWAT). In particular, we measured Ucp1 induction in association with up-regulation of actomyosin components and several Serca (Serca1, Serca2a, Serca2b) ATPases. In beige adipocytes, we observed that AMPK activation is responsible for transducing the amino acid lowering in an enhanced fat catabolism, which sustains both Ucp1- and Serca-dependent energy dissipation. Limiting AMPK activation counteracts the expression of brown fat and muscular genes, including Ucp1 and Serca, as well as mitochondrial oxidative genes. We observed that mitochondrial reactive oxygen species are the upstream molecules controlling AMPK-mediated metabolic rewiring in amino acid-restricted beige adipocytes. Our findings delineate a novel metabolic phenotype of responses to amino acid shortage, which recapitulates some of the benefits of cool temperature in sWAT. In conclusion, this study highlights LP/HC diet as a valuable and practicable strategy to prevent metabolic diseases through the enhancement of mitochondrial oxidative metabolism and the recruitment of different energy dissipating routes in beige adipocytes.
Project description:Salt-sensitive hypertension is associated with severe organ damage. Generating oxygen radicals is an integral component of salt-induced kidney damage, and activated leukocytes are important in oxygen radical biosynthesis. We hypothesized that a high-salt diet causes the upregulation of immune-related mechanisms, thereby contributing to the susceptibility of Dahl salt-sensitive rats to hypertensive kidney damage. For verifying the hypothesis, we investigated leukocytes adhering to retinal vessels when Dahl salt-sensitive rats were challenged with a high-salt (8% NaCl) diet using acridine orange fluoroscopy and a scanning laser ophthalmoscope. The high-salt diet increased leukocyte adhesion after 3 days and was associated with a significant increase in mRNA biosynthesis of monocyte chemotactic protein-1 and intercellular adhesion molecule-1 (ICAM-1) -related molecules in the kidney. Losartan treatment did not affect increased leukocyte adhesion during the early, pre-hypertensive phase of high salt loading; however, losartan attenuated the adhesion of leukocytes during the hypertensive stage. Moreover, the inhibition of leukocyte adhesion in the pre-hypertensive stage by anti-CD18 antibodies decreased tethering of leukocytes and was associated with the attenuation of functional and morphological kidney damage without affecting blood pressure elevation. In conclusion, a high-salt challenge rapidly increased leukocyte adhesion through the over-expression of ICAM-1. Increased leukocyte adhesion in the pre-hypertensive stage is responsible for subsequent kidney damage in Dahl salt-sensitive rats. Immune system involvement may be a key component that initiates kidney damage in a genetic model of salt-induced hypertension.
Project description:ObjectiveTo test the hypothesis that transient receptor potential vanilloid type 1 channel (TRPV1)-mediated increases in afferent renal nerve activity (ARNA) and release of substance P (SP) and calcitonin gene-related peptide (CGRP) from the renal pelvis are suppressed in Dahl salt-sensitive (DS), but not -resistant (DR), rats fed a high-salt (HS) diet.Methods and resultsMale DS and DR rats were given a HS or low-salt (LS) diet for 3 weeks. Perfusion of capsaicin (CAP, 10(-6)M), a selective TRPV1 agonist, into the left renal pelvis increased ipsilateral ARNA in all groups, but with a smaller magnitude in DS-HS compared to other groups. CAP increased contralateral urine flow in all groups except DS-HS rats. CAP-induced release of SP and CGRP from the renal pelvis was less in DS-HS compared to other groups. Western blot showed that TRPV1 expression in the kidney decreased while expression of neurokinin 1 receptors increased in DS-HS compared to other groups.ConclusionTRPV1-mediated increases in ARNA and release of SP and CGRP in the renal pelvis are impaired in DS rats fed a HS diet, which can likely be attributed to suppressed TRPV1 expression in the kidney and contributes to increased salt sensitivity.
Project description:Stroke-prone spontaneously hypertensive rats (SHRSP) on high-salt diet are characterized by extremely high arterial pressures, and have been endorsed as a model for hypertensive small vessel disease and vascular cognitive impairment. However, rapidly developing malignant hypertension is a well-known cause of posterior reversible encephalopathy syndrome (PRES) in humans, associated with acute neurological deficits, seizures, vasogenic cerebral edema and microhemorrhages. In this study, we aimed to examine the overlap between human PRES and SHRSP on high-salt diet. In SHRSP, arterial blood pressure progressively increased after the onset of high-salt diet and seizure-like signs emerged within three to five weeks. MRI revealed progressive T2-hyperintense lesions suggestive of vasogenic edema predominantly in the cortical watershed and white matter regions. Histopathology confirmed severe blood-brain barrier disruption, white matter vacuolization and microbleeds that were more severe posteriorly. Hematological data suggested a thrombotic microangiopathy as a potential underlying mechanism. Unilateral common carotid artery occlusion protected the ipsilateral hemisphere from neuropathological abnormalities. Notably, all MRI and histopathological abnormalities were acutely reversible upon switching to regular diet and starting antihypertensive treatment. Altogether our data suggest that SHRSP on high-salt diet recapitulates the neurological, histopathological and imaging features of human PRES rather than chronic progressive small vessel disease.
Project description:High-salt diets may increase both hypertension and risk of cardiovascular diseases. Although high-salt diets can result in hypertension and impaired vascular function, the molecular mechanisms underlying these dysfunctions are not fully known. Thus, the aims of the present study were to identify key proteins and their signaling pathways and associated molecular mechanisms that may contribute to, as well as be potential biomarkers of, the pathogenesis of hypertension-related cardiovascular diseases. To that end, the present study identified and quantitated serum proteins that were differentially expressed in male rats fed regular chow (n = 4) and those fed a high-salt diet (n = 4) to induce hypertension. The serum was collected from both groups, and the proteins differentially expressed in the serum were identified and quantitated using isobaric tags for relative and absolute quantitation combined with liquid chromatography-tandem mass spectrometry. Of 396 identified proteins, 24 were differentially expressed between the groups: 19 proteins were significantly (P < 0.05) upregulated (> 1.2 fold change), and 5 were significantly downregulated (< 0.8 fold change). Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that these differentially expressed proteins may contribute to cardiovascular diseases via the roles they play in endothelial function, vascular remodeling, the coagulation cascade, and the complement system. In addition, phagosome processes and the integrin-associated focal adhesion signaling pathway were determined to be potential underlying molecular mechanisms. The key proteins identified in this study warrant further development as new therapeutic targets or biomarkers of cardiovascular diseases associated with high-salt diet-induced hypertension.
Project description:We examined the impact of sex on high-fat diet (HFD)-induced renal alterations in Dahl salt-sensitive and Sprague Dawley rats. In Dahl rats, HFD (60% kcal from fat for 24-26 weeks starting at weaning) significantly and equally increased blood pressure in males and females when compared with rats fed a control diet (10% kcal from fat). Male Dahl rats on HFD exhibited progressive renal histological injury and moderately increased renal macrophage infiltration at 10 and 24 weeks of feeding when compared with males on control diet. Female Dahl rats had lower grade renal injury and less macrophage infiltration (except at 17 weeks) than males regardless of diet. Male Dahl rats on both diets showed progressively increasing numbers of renal T-cells, a pattern not observed in females. HFD per se did not significantly affect renal T-cell number. Male Dahl rats had lower renal regulatory T-cells cell ratio than females at 24 weeks. Renal macrophage and T-cell infiltrations were highly correlated to final mean arterial pressure levels in males but not in females. Sprague Dawley rats fed HFD were normotensive without significant renal injury/inflammation after 24 weeks of feeding. In summary, HFD feeding fails to increase arterial blood pressure in Sprague Dawley rats but strongly promotes hypertension in both male and female Dahl salt-sensitive rats. Only Dahl males, however, exhibited blood pressure-associated renal inflammation and injury. Maintenance of regulatory T-cells ratio may protect against hypertension-associated renal injury/inflammation but not HFD-induced hypertension.