Project description:An untargeted metabolomics workflow for the detection of metabolites derived from endogenous or exogenous tracer substances is presented. To this end, a recently developed stable isotope-assisted LC-HRMS-based metabolomics workflow for the global annotation of biological samples has been further developed and extended. For untargeted detection of metabolites arising from labeled tracer substances, isotope pattern recognition has been adjusted to account for nonlabeled moieties conjugated to the native and labeled tracer molecules. Furthermore, the workflow has been extended by (i) an optional ion intensity ratio check, (ii) the automated combination of positive and negative ionization mode mass spectra derived from fast polarity switching, and (iii) metabolic feature annotation. These extensions enable the automated, unbiased, and global detection of tracer-derived metabolites in complex biological samples. The workflow is demonstrated with the metabolism of (13)C9-phenylalanine in wheat cell suspension cultures in the presence of the mycotoxin deoxynivalenol (DON). In total, 341 metabolic features (150 in positive and 191 in negative ionization mode) corresponding to 139 metabolites were detected. The benefit of fast polarity switching was evident, with 32 and 58 of these metabolites having exclusively been detected in the positive and negative modes, respectively. Moreover, for 19 of the remaining 49 phenylalanine-derived metabolites, the assignment of ion species and, thus, molecular weight was possible only by the use of complementary features of the two ion polarity modes. Statistical evaluation showed that treatment with DON increased or decreased the abundances of many detected metabolites.
Project description:Cerebrospinal fluid (CSF) is a key body fluid that maintains the homeostasis in central nervous system (CNS). As a biofluid whose content reflects the brain metabolic activity, the CSF is analyzed in the context of neurological diseases and is rarely collected from healthy subjects. For this reason, the metabolite variation associated with general phenotypic characteristics such as gender and age have hardly ever been studied. Here we present the hydrophilic interaction liquid chromatography-high resolution mass spectrometry (HILIC-HRMS) data as a result of untargeted metabolomics analysis of a cohort of elderly cognitively healthy volunteers (n = 32). 146 unambiguously identified water soluble metabolites (using accurate mass, retention time and MS/MS matching against spectral libraries) were measured and their abundances across all the subjects depending on their gender are provided in this article. Data tables are available at https://data.mendeley.com/datasets/c73xtsd4s5/1. it's published on mendeley, the DOI is DOI:10.17632/c73xtsd4s5.1. The data presented in this article are related to the research article entitled "A global HILIC-MS approach to measure polar human cerebrospinal fluid metabolome: Exploring gender-associated variation in a cohort of elderly cognitively healthy subjects" (Gallart-Ayala et al., 2018, In press).
Project description:Lipids are essential cellular constituents that have many critical roles in physiological functions. They are notably involved in energy storage and cell signaling as second messengers, and they are major constituents of cell membranes, including lipid rafts. As a consequence, they are implicated in a large number of heterogeneous diseases, such as cancer, diabetes, neurological disorders, and inherited metabolic diseases. Due to the high structural diversity and complexity of lipid species, the presence of isomeric and isobaric lipid species, and their occurrence at a large concentration scale, a complete lipidomic profiling of biological matrices remains challenging, especially in clinical contexts. Using supercritical fluid chromatography coupled with high-resolution mass spectrometry, we have developed and validated an untargeted lipidomic approach to the profiling of plasma and blood. Moreover, we have tested the technique using the Dry Blood Spot (DBS) method and found that it allows for the easy collection of blood for analysis. To develop the method, we performed the optimization of the separation and detection of lipid species on pure standards, reference human plasma (SRM1950), whole blood, and DBS. These analyses allowed an in-house lipid data bank to be built. Using the MS-Dial software, we developed an automatic process for the relative quantification of around 500 lipids species belonging to the 6 main classes of lipids (including phospholipids, sphingolipids, free fatty acids, sterols, and fatty acyl-carnitines). Then, we compared the method using the published data for SRM 1950 and a mouse blood sample, along with another sample of the same blood collected using the DBS method. In this study, we provided a method for blood lipidomic profiling that can be used for the easy sampling of dry blood spots.
Project description:Adulteration of high-quality meat products using lower-priced meats, such as pork, is a crucial issue that could harm consumers. The consumption of pork is strictly forbidden in certain religions, such as Islam and Judaism. Therefore, the objective of this research was to develop untargeted metabolomics using liquid chromatography-high resolution mass spectrometry (LC-HRMS) combined with chemometrics for analysis of pork in beef meatballs for halal authentication. We investigated the use of non-targeted LC-HRMS as a method to detect such food adulteration. As a proof of concept using six technical replicates of pooled samples from beef and pork meat, we could show that metabolomics using LC-HRMS could be used for high-throughput screening of metabolites in meatballs made from beef and pork. Chemometrics of principal component analysis (PCA) was successfully used to differentiate beef meatballs and pork meatball samples. Partial least square-discriminant analysis (PLS-DA) clearly discriminated between halal and non-halal beef meatball samples with 100% accuracy. Orthogonal projection to latent structures-discriminant analysis (OPLS-DA) perfectly discriminated and classified meatballs made from beef, pork, and a mixture of beef-pork with a good level of fitness (R2X = 0.88, R2Y = 0.71) and good predictivity (Q2 = 0.55). Partial least square (PLS) and orthogonal PLS (OPLS) were successfully applied to predict the concentration of pork present in beef meatballs with high accuracy (R2 = 0.99) and high precision. Thirty-five potential metabolite markers were identified through VIP (variable important for projections) analysis. Metabolites of 1-(1Z-hexadecenyl)-sn-glycero-3-phosphocholine, acetyl-l-carnitine, dl-carnitine, anserine, hypoxanthine, linoleic acid, and prolylleucine had important roles for predicting pork in beef meatballs through S-line plot analysis. It can be concluded that a combination of untargeted metabolomics using LC-HRMS and chemometrics is promising to be developed as a standard analytical method for halal authentication of highly processed meat products.
Project description:Colorectal cancer is one of the main causes of cancer death worldwide, and novel biomarkers are urgently needed for its early diagnosis and treatment. The utilization of metabolomics to identify and quantify metabolites in body fluids may allow the detection of changes in their concentrations that could serve as diagnostic markers for colorectal cancer and may also represent new therapeutic targets. Metabolomics generates a pathophysiological 'fingerprint' that is unique to each individual. The purpose of our study was to identify a differential metabolomic signature for metastatic colorectal cancer. Serum samples from 60 healthy controls and 65 patients with metastatic colorectal cancer were studied by liquid chromatography coupled to high-resolution mass spectrometry in an untargeted metabolomic approach. Multivariate analysis revealed a separation between patients with metastatic colorectal cancer and healthy controls, who significantly differed in serum concentrations of one endocannabinoid, two glycerophospholipids, and two sphingolipids. These findings demonstrate that metabolomics using liquid-chromatography coupled to high-resolution mass spectrometry offers a potent diagnostic tool for metastatic colorectal cancer.
Project description:Neuroblastoma (NB) is the most common extracranial malignant tumor in children. Although the survival rate of NB has improved over the years, the outcome of NB still remains poor for over 30% of cases. A more accurate risk stratification remains a key point in the study of NB and the availability of novel prognostic biomarkers of "high-risk" at diagnosis could help improving patient stratification and predicting outcome. In this paper we show a biomarker discovery approach applied to the plasma of 172 NB patients. Plasma samples from a first cohort of NB patients and age-matched healthy controls were used for untargeted metabolomics analysis based on high-resolution mass spectrometry (HRMS). Differential expression analysis highlighted a number of metabolites annotated with a high degree of identification. Among them, 3-O-methyldopa (3-O-MD) was validated in a second cohort of NB patients using a targeted metabolite profiling approach and its prognostic potential was also analyzed by survival analysis on patients with 3 years follow-up. High expression of 3-O-MD was associated with worse prognosis in the subset of patients with stage M tumor (log-rank p < 0.05) and, among them, it was confirmed as a prognostic factor able to stratify high-risk patients older than 18 months. 3-O-MD might be thus considered as a novel prognostic biomarker of NB eligible to be included at diagnosis among catecholamine metabolite panels in prospective clinical studies. Further studies are warranted to exploit other potential biomarkers highlighted using our approach.
Project description:Honey consumption is attributed to potentially advantageous effects on human health due to its antioxidant capacity as well as anti-inflammatory and antimicrobial activity, which are mainly related to phenolic compound content. Phenolic compounds are secondary metabolites of plants, and their content in honey is primarily affected by the botanical and geographical origin. In this study, a high-resolution mass spectrometry (HRMS) method was applied to determine the phenolic profile of various honey matrices and investigate authenticity markers. A fruitful sample set was collected, including honey from 10 different botanical sources (n = 51) originating from Greece and Poland. Generic liquid-liquid extraction using ethyl acetate as the extractant was used to apply targeted and non-targeted workflows simultaneously. The method was fully validated according to the Eurachem guidelines, and it demonstrated high accuracy, precision, and sensitivity resulting in the detection of 11 target analytes in the samples. Suspect screening identified 16 bioactive compounds in at least one sample, with abscisic acid isomers being the most abundant in arbutus honey. Importantly, 10 markers related to honey geographical origin were revealed through non-targeted screening and the application of advanced chemometric tools. In conclusion, authenticity markers and discrimination patterns were emerged using targeted and non-targeted workflows, indicating the impact of this study on food authenticity and metabolomic fields.
Project description:The diffusion of new psychoactive substances (NPS) is highly dynamic and the available substances change over time, resulting in forensic laboratories becoming highly engaged in NPS control. In order to manage NPS diffusion, efficient and innovative legal responses have been provided by several nations. Metabolic profiling is also part of the analytical fight against NPS, since it allows us to identify the biomarkers of drug intake which are needed for the development of suitable analytical methods in biological samples. We have recently reported the characterization of two new analogs of fentanyl, i.e., 4-fluoro-furanylfentanyl (4F-FUF) and isobutyrylfentanyl (iBF), which were found for the first time in Italy in 2019; 4F-FUF was identified for the first time in Europe and was notified to the European Early Warning System. The goal of this study was the characterization of the main metabolites of both drugs by in vitro and in vivo experiments. To this end, incubation with mouse hepatocytes and intraperitoneal administration to mice were carried out. Samples were analyzed by means of liquid chromatography-high resolution mass spectrometry (LC-HRMS), followed by untargeted data evaluation using Compound Discoverer software with a specific workflow, designed for the identification of the whole metabolic pattern, including unexpected metabolites. Twenty metabolites were putatively annotated for 4-FFUF, with the dihydrodiol derivative appearing as the most abundant, whereas 22 metabolites were found for iBF, which was mainly excreted as nor-isobutyrylfentanyl. N-dealkylation of 4-FFUF dihydrodiol and oxidation to carbonyl metabolites for iBF were also major biotransformations. Despite some differences, in general there was a good agreement between in vitro and in vivo samples.
Project description:Generating comprehensive and high-fidelity metabolomics data matrices from LC/HRMS data remains to be extremely challenging for population-scale large studies (n > 200). Here, we present a new data processing pipeline, the Intrinsic Peak Analysis (IDSL.IPA) R package (https://ipa.idsl.me), to generate such data matrices specifically for organic compounds. The IDSL.IPA pipeline incorporates (1) identifying potential 12C and 13C ion pairs in individual mass spectra; (2) detecting and characterizing chromatographic peaks using a new sensitive and versatile approach to perform mass correction, peak smoothing, baseline development for local noise measurement, and peak quality determination; (3) correcting retention time and cross-referencing peaks from multiple samples by a dynamic retention index marker approach; (4) annotating peaks using a reference database of m/z and retention time; and (5) accelerating data processing using a parallel computation of the peak detection and alignment steps for larger studies. This pipeline has been successfully evaluated for studies ranging from 200 to 1600 samples. By specifically isolating high quality and reliable signals pertaining to carbon-containing compounds in untargeted LC/HRMS data sets from larger studies, IDSL.IPA opens new opportunities for discovering new biological insights in the population-scale metabolomics and exposomics projects. The package is available in the R CRAN repository at https://cran.r-project.org/package=IDSL.IPA.