Project description:MicroRNAs are important negative regulators of protein coding gene expression, and have been studied intensively over the last few years. To this purpose, different measurement platforms to determine their RNA abundance levels in biological samples have been developed. In this study, we have systematically compared 12 commercially available microRNA expression platforms by measuring an identical set of 20 standardized positive and negative control samples, including human universal reference RNA, human brain RNA and titrations thereof, human serum samples, and synthetic spikes from homologous microRNA family members. We developed novel quality metrics in order to objectively assess platform performance of very different technologies such as small RNA sequencing, RT-qPCR and (microarray) hybridization. We assessed reproducibility, sensitivity, quantitative performance, and specificity. The results indicate that each method has its strengths and weaknesses, which helps guiding informed selection of a quantitative microRNA gene expression platform in function of particular study goals.
Project description:Phosphoinositide-3-kinase (PI3K)-α inhibitors are clinically active in squamous carcinoma (SCC) of the head and neck (H&N) bearing mutations or amplification of PIK3CA. We aimed to identify potential mechanism of resistance and have observed that SCCs cells overcome the antitumor effects of the PI3Kα inhibitor BYL719 by maintaining PI3K-independent activation of the mammalian target of rapamycin (mTOR). The persistent mTOR activation is mediated by the tyrosine kinase receptor AXL. We found that AXL is overexpressed in resistant tumors, dimerizes with the epidermal growth factor receptor (EGFR), phosphorylates EGFR tyrosine 1173, resulting in activation of phospholipase Cγ (PLCγ)- protein kinase C (PKC) that, in turn, activates mTOR. Finally, simultaneous treatment with PI3Kα and either EGFR, AXL or PKC inhibitors reverts this resistance. RNAseq from acquired resistant cells CAL33B, K180B were compared to their parental counterpart CAL33 and K180, respectively. K180 is a shortcut of KYSE180, and B stands for BYL719. Duplicate of parental sensitive cells and K180B, and triplicate for CAL33B.
Project description:In order to determine whether dis-regulation of a genetic pathway could explain the increased apoptosis of parp-2-/- double positive thymocytes, the gene expression profiles in double positive thymocytes derived from wild-type and parp-2-/- mice were analysed using Affymetrix oligonucleotide chips (mouse genome 430 2.0).
Project description:Flash proteotyping is a methodology for ultra-fast identification of microorganisns by tandem mass spectrometry. Here, we obtained results on five reference strains and ten new bacterial isolates. The methodology is based on direct sample infusion into the mass spectromete and an original, highly sensitive procedure for data processing and taxonomic identification.
Project description:This work aimed to improve sensitivity of targeted detection by orbitrap mass spectrometers. Co-isolation of contaminant ions was identified as the major factor limiting sensitivity, and LOD of both PRM and accumulated precursor ion scanning (AIM) was improved by increased chromatographic resolution.
Project description:Top-down analysis of intact proteins by mass spectrometry provides an ideal platform for comprehensive proteoform characterization, in particular, for the identification and localization of post-translational modifications (PTM) co-occurring on a protein. One of the main bottlenecks in top-down proteomics is insufficient protein sequence coverage caused by incomplete protein fragmentation. Based on previous work on peptides, increasing sequence coverage and PTM localization by combining sequential ETD and HCD fragmentation in a single fragmentation event, we hypothesized that protein sequence coverage and phospho-proteoform characterization could be equally improved by this new dual fragmentation method termed EThcD, recently been made available on the Orbitrap Fusion. Here, we systematically benchmark the performance of several (hybrid) fragmentation methods for intact protein analysis on an Orbitrap Fusion, using as a model system a 17.5 kDa N-terminal fragment of the mitotic regulator Bora. During cell division Bora becomes multiply phosphorylated by a variety of cell cycle kinases, including Aurora A and Plk1, albeit at distinctive sites. Here, we monitor the phosphorylation of Bora by Aurora A and Plk1, analyzing the generated distinctive phospho-proteoforms by top-down fragmentation. We show that EThcD and ETciD on a Fusion are feasible and capable of providing richer fragmentation spectra compared to HCD or ETD alone, increasing protein sequence coverage, and thereby facilitating phosphosite localization and the determination of kinase specific phosphorylation sites in these phospho-proteoforms.
Project description:Ossification of the posterior longitudinal ligament (OPLL) is formed by heterogeneous ossification of posterior longitudinal ligament. The patho-mechanism of OPLL is still largely unknown. MicroRNAs are small nucleatides that function as regulators of gene expression in almost any biological process. However, few microRNAs are reported to have a role in the pathological process of OPLL. Therefore, we performed high-throughput microRNA sequencing and transcriptome sequencing of primary OPLL and PLL cells in order to decipher the interacting network of microRNAs in OPLL. MRNA and microRNA profiles were done using primary culture cells of human ossification of the posterior longitudinal ligament (OPLL) tissue and normal posterior longitudinal ligament (PLL) tissue.
Project description:Terpenes synthases typically form complex molecular scaffolds by concerted activation and cyclization of linear starting materials in a single active site. We have determined that iridoid synthase, an atypical reductive terpene synthase, catalyses the activation of its substrate 8-oxogeranial into a reactive enol intermediate but does not catalyse the subsequent cyclisation into nepetalactol. This discovery led us to identify a class of nepetalactol-related short-chain dehydrogenase enzymes (NEPS) from catmint (Nepeta mussinii) which catalyse the stereoselective cyclisation of the enol intermediate into nepetalactol isomers. Subsequent oxidation of nepetalactols by NEPS1 provides nepetalactones, metabolites that are well known for both insect-repellent activity and euphoric effect in cats. Structural characterisation of the NEPS3 cyclase reveals it binds to NAD+ yet does not utilise it chemically for a non-oxidoreductive formal [4+2] cyclisation. These discoveries will complement metabolic reconstructions of iridoid and monoterpene indole alkaloid biosynthesis.
Project description:Changes in cellular metabolism contribute to the development and progression of tumors, and can render tumors vulnerable to interventions. However, studies of human cancer metabolism remain limited due to technical challenges of detecting and quantifying small molecules, the highly interconnected nature of metabolic pathways, and the lack of designated tools to analyze and integrate metabolomics with other âomics data. Our study generates the largest comprehensive metabolomics dataset on a single cancer type, and provides a significant advance in integration of metabolomics with sequencing data. Our results highlight the massive re-organization of cellular metabolism as tumors progress and acquire more aggressive features. The results of our work are made available through an interactive public data portal for cancer research community. 10 RNA samples from human ccRCC tumors analyzed from the high glutathione cluster
Project description:The “Pan-Human Library” is a compendium of highly specific assays covering more than 10 000 human proteins and enabling their targeted analysis in SWATH-MS datasets acquired from research or clinical specimens. This dataset contains validation SWATH-MS data and OpenSWATH results of whole cell lysates of HeLa (guot_L130330_005_SW, guot_L130330_006_SW, guot_L130330_007_SW) and U2OS cells (gout_L130330_013_SW, gout_L130330_014_SW, gout_L130330_015_SW). Further, the combined assay library (phl004_s32.csv) and the sample-specific assay libraries (phl004_sshela_s32.csv, phl004_ssu2os.csv) used for the analysis are provided.