Project description:Introduction: Data from last years suggested that early exposure to endocrine disruptors (EDs) can predispose newborns to endocrine dysfunction of adipocytes, obesity, and associated disorders. The implication of EDs at low doses on adipocyte development has been poorly investigated. For instance, vinclozolin (V) is a dicarboximide fungicide widely used in agriculture since the 90's, alone or in mixture with genistein (G), an isoflavonoid from Leguminosae. This study aims to identify the effect of vinclozolin alone or with genistein, on adipose tissue properties using cell culture. Methods: In steroid-free conditions, 3T3-L1 pre-adipocytes were induced to differentiate in the presence of EDs, singularly or in mixtures, for 2 days. DNA and triglyceride (TG) levels were measured on days 0, 2 and 8 of differentiation. Leptin secretion was measured only on the eighth day. Results: We show that low doses of G (25 µM) and V (0.1 µM) inhibit pre-adipocytes differentiation. This inhibition has been represented by a decreasing in DNA content (µg/well) and decreasing in TG accumulation (mg/mL) in 3T3-L1 cells. Nevertheless, V increased the anti-adipogenic properties of G. Conclusion: This study confirms that EDs singularly or in mixtures, introduced during early stages of life, could affect the differentiation and the endocrine activity of adipocytes, and can act as potential factors for obesity.
Project description:PurposeTo evaluate whether choroidal thickness (CT) using arm-mounted optical coherence tomography (OCT) in infants screened for retinopathy of prematurity (ROP) correlates with oxygen exposure in neonates.MethodsOCT images were obtained in infants screened for ROP in a single level IV neonatal intensive care unit. CT was measured at three different locations: the subfoveal center and 1.5 mm from the fovea center in each direction. Correlation and regression analyses were performed to determine the relationship between clinical factors and CT. Clinical factors included gestational age, birth weight, presence of bronchopulmonary dysplasia (BPD), and fraction of inspired oxygen (FiO2) at defined time points: 30 weeks postmenstrual age (PMA), 36 weeks PMA, and on day of imaging.ResultsMean subfoveal, nasal, and temporal choroidal thicknesses CT (SFCT, NCT, and TCT, respectively) were 228.0 ± 51.4 µm, 179.7 ± 50.3 µm, and 186.4 ± 43.8 µm, respectively. SFCT was found to be significantly thicker than NCT and TCT (P < 0.0001 and P = 0.0002, respectively), but no significant difference was found between NCT and TCT (P = 0.547). Compared with infants without BPD, infants with BPD had thinner SFCT and NCT (P = 0.01 and P = 0.0008, respectively). Birth weight was positively correlated with SFCT (r = 0.39, P = 0.01) and NCT (r = 0.33, P = 0.045) but not TCT. Gestational age and ROP stage were not significantly associated with CT. SFCT was found to be significantly thinner with higher average FiO2 supplementation levels at 30 weeks PMA (r = -0.51, P = 0.01) but not at 36 weeks PMA. Regression analysis revealed that FiO2 at 30 weeks PMA was an independent predictor of SFCT in infants screened for ROP (P = 0.01).ConclusionsEarly postnatal exposure (<32 weeks PMA) to higher oxygen supplementation in premature neonates statistically predicts choroidal thinning.
Project description:Fetal exposure of mice to arsenic and subsequent postnatal diethylstilbestrol (DES) facilitates production of urogenital system and liver tumors in the offspring when they reach adulthood. The adrenal is a target of endocrine disruption that could influence tumor formation at other sites. Thus, we examined possible fetal arsenic-induced adrenal effects as a potential basis of arsenic enhancement of DES carcinogenesis. Pregnant CD1 mice were given drinking water containing 85 ppm arsenic as sodium arsenite or unaltered water from day 8 to day 18 of gestation and were allowed to deliver normally. Groups of offspring were subsequently injected s.c. on postpartum days 1-5 with DES (2 microg/pup/day) and killed on postnatal day 12. Total RNA was isolated from the whole adrenal glands, and the expression of various genes was analyzed by real-time RT-PCR. Fetal arsenic exposure greatly enhanced DES-induced, estrogen-linked gene expression, such as estrogen receptor-alpha and trefoil factors. Expression of genes involved with steroid metabolism and/or methionine metabolism was also increased, including genes encoding for 17beta-hydroxysteroid dehydrogenase type 5 (HSD17beta5) and androstenedione 15alpha-hydroxylase (Cyp2a4). The transcripts for homocysteine cycling genes (betaine-homocysteine methyltransferase and thioether S-methyltransferase) and developmental marker genes (alpha-fetoprotein, insulin-like growth factor 2 and IGF binding protein-1), were also higher with arsenic plus DES than either treatment alone. Thus, exposure of the mouse to arsenic during a critical period of fetal development may potentially alter adrenal genetic programming, leading to endocrine disruption and potentially enhancing tumor formation together with DES at other sites much later in life. Functional studies, such as changes in circulating steroids, would greatly support this hypothesis, and are planned.
Project description:BackgroundEndocrine disrupting chemical (EDC) exposure is ubiquitous. EDC exposure during critical windows of development may interfere with the body's endocrine system, affecting growth. Previous human studies have examined one EDC at a time in relation to infant growth. By studying mixtures, the human experience can be better approximated.AimsWe investigated the association of prenatal exposure to persistent EDCs (per- and polyfluoroalkyl substances (PFAS), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCPs)) as mixtures with postnatal body size among female offspring.SubjectsWe used a sub-sample of the Avon Longitudinal Study of Parents and Children (N = 425), based in the United Kingdom.Study designWe quantified 52 EDCs in maternal serum collected during pregnancy. We used Bayesian kernel machine regression with a random intercept to examine the association of prenatal concentrations of EDC mixtures with longitudinal postnatal body size measures for each EDC class separately (PFAS, PCBs, and OCPs) and for all three classes combined.Outcome measuresWeight and height measures at 0, 2, 9, and 19 months were obtained by health professionals as part of routine child health surveillance.ResultsThe mixture representing all three classes combined (31 chemicals) (n = 301) was inversely associated with postnatal body size. Holding all EDCs in the 31-chemical mixture at the 75th percentile compared to the 50th percentile was associated with 0.15 lower weight-for-age z-score (95% credible interval -0.26, -0.03). Weak inverse associations were also seen for height-for-age and body mass index-for-age scores.ConclusionsThese results suggest that prenatal exposure to mixtures of persistent EDCs may affect postnatal body size.
Project description:The pattern of serum proteins, the typical features of the electrophoretogram in newborn piglets and during their postnatal development is not completely described. Therefore, the aim of this study was to characterize the changes in serum protein electrophoretic pattern and features of the electrophoretograms during the early postnatal period. Significant changes during the monitored period were found in all evaluated parameters (P < 0.001). The most marked changes were observed mainly in the period before weaning. The concentrations of total proteins, albumin and γ-globulins were before colostrum intake low, γ-globulins represented the smallest proportion of protein fractions. The proportion of α1-globulins was after birth a dominant protein fraction. Significant increase of total proteins, α2-, β- and γ-globulins and decrease of α1-globulins was found 2 days after colostrum intake. The albumin and A/G values increased after birth gradually until weaning. After weaning a significant changes were found in absolute concentrations of total protein and albumin, and in relative values of β-globulin fractions. Presented results showed marked developmental alterations in the serum protein pattern in piglets along with the age. The study also brings new knowledge in the field of description of typical features of electrophoretograms in the observed period of piglet's life.
Project description:Bronchial asthma is a chronic airway inflammatory condition with high morbidity, and effective treatments for asthma are limited. Allergen-specific immunotherapy can only induce peripheral immune tolerance and is not sustainable. Exploring new therapeutic strategies is of great clinical importance. Recombinant adenovirus (rAdV) was used as a vector to make cells expressing cytotoxic T lymphocyte-associated antigen-4-immunoglobulin (CTLA4Ig) a soluble CTLA4 immunoglobulin fusion protein. Dendritic cells (DCs) were modified using the rAdVs together with allergens. Then these modified DCs were transplanted to mice before allergen sensitization. The persistence and specificity of immune tolerance were evaluated in mice challenged with asthma allergens at 3 and 7 months. DCs modified by CTLA4Ig showed increased IL-10 secretion, decreased IL-12 secretion, and T cell stimulation in vitro. Mice treated with these DCs in the early neonatal period developed tolerance against the allergens that were used to induce asthma in the adult stage. Asthma symptoms, lung damage, airway reactivity, and inflammatory response all improved. Humoral immunity indices showed that this therapeutic strategy strongly suppressed mice immune responses and was maintained for as long as 7 months. Furthermore, allergen cross-sensitization and challenge experiments demonstrated that this immune tolerance was allergen-specific. Treatment with CTLA4Ig modified DCs in the early neonatal period, inducing persistent and allergen-specific immune tolerance to asthma in adult mice. Our results suggest that it may be possible to develop a vaccine for asthma.
Project description:Neonicotinoids have become the most widely used class of insecticides world-wide. Although numerous studies have documented neonicotinoid toxicity in bees and other insects, the effects of exposure during early development in mammals remain largely unexplored. We assessed the effects of the neonicotinoid imidacloprid (IMI) in adult male and female mice after in utero and early postnatal exposure. Pregnant mice were infused with IMI (0.5 mg/kg/day) from gestational day 4 to the end of nursing at postnatal day 21. The young adult offspring were studied in a series of biochemical and behavioral tests. To assess reproducibility, the behavioral analyses were conducted in three separate studies using multiple exposed litters. Exposure to IMI reduced fecundity, and in adult offspring, decreased body weight in male but not female pups. Offspring from IMI-treated mothers displayed lower triglycerides, elevated motor activity, enhanced social dominance, reduced depressive-like behavior, and a diminution in social aggression compared to vehicle treated controls. Low levels of IMI were detected in the brains and livers of the treated mothers, while trace levels were detected in some offspring. Our results demonstrate that transient exposure to a neonicotinoid over the early developmental period induces long-lasting changes in behavior and brain function in mice.