Project description:The autoimmune process in rheumatoid arthritis depends on activation of immune cells, which utilize intracellular kinases to respond to external stimuli such as cytokines, immune complexes, and antigens. CD4+ T cells comprise a large proportion of the inflammatory cells that invade the synovial tissue and may therefore be a cell type of pathogenic importance. Both methotrexate and infliximab are effective in the treatment of inflammatory arthritis; however, the biological effects triggered by these treatments and the biochemical mechanisms underlining the cell response are still not fully understood. Thus, in this study the global metabolic changes associated with methotrexate or infliximab treatment of isolated human CD4+ T cells were examined using gas chromatography/mass spectrometry or liquid chromatography/mass spectrometry. In total 148 metabolites involved in selective pathways were found to be significantly altered. Overall, the changes observed are likely to reflect the effort of CD4+ cells to increase the production of cellular reducing power to offset the cellular stress exerted by treatment. Importantly, analysis of the global metabolic changes associated with MTX or infliximab treatment of isolated human CD4+ T cells suggested that the toxicity associated with these agents is minimal when used at clinically relevant concentrations.
Project description:Fusariumgraminearum and related species commonly infest grains causing the devastating plant disease Fusarium head blight (FHB) and the formation of trichothecene mycotoxins. The most relevant toxin is deoxynivalenol (DON), which acts as a virulence factor of the pathogen. FHB is difficult to control and resistance to this disease is a polygenic trait, mainly mediated by the quantitative trait loci (QTL) Fhb1 and Qfhs.ifa-5A. In this study we established a targeted GC-MS based metabolomics workflow comprising a standardized experimental setup for growth, treatment and sampling of wheat ears and subsequent GC-MS analysis followed by data processing and evaluation of QC measures using tailored statistical and bioinformatics tools. This workflow was applied to wheat samples of six genotypes with varying levels of Fusarium resistance, treated with either DON or water, and harvested 0, 12, 24, 48 and 96 h after treatment. The results suggest that the primary carbohydrate metabolism and transport, the citric acid cycle and the primary nitrogen metabolism of wheat are clearly affected by DON treatment. Most importantly significantly elevated levels of amino acids and derived amines were observed. In particular, the concentrations of the three aromatic amino acids phenylalanine, tyrosine, and tryptophan increased. No clear QTL specific difference in the response could be observed except a generally faster increase in shikimate pathway intermediates in genotypes containing Fhb1. The overall workflow proved to be feasible and facilitated to obtain a more comprehensive picture on the effect of DON on the central metabolism of wheat.
Project description:Endotoxemia induced by the administration of low-dose lipopolysaccharide (LPS) to healthy human volunteers is a well-established experimental protocol and has served as a reproducible platform for investigating the responses to systemic inflammation. Because metabolic composition of a tissue or body fluid is uniquely altered by stimuli and provides information about the dominant regulatory mechanisms at various cellular processes, understanding the global metabolic response to systemic inflammation constitutes a major part in this investigation complementing the studies undertaken so far in both clinical and systems biology fields. This article communicates the first proof-of-principle metabonomic analysis, which comprised global biochemical profiles in human plasma samples from healthy subjects given intravenous endotoxin at 2 ng/kg. Concentrations of a total of 366 plasma biochemicals were determined in archived blood samples collected from 15 endotoxin-treated subjects at five time points within 24 h after treatment and compared with control samples collected from four saline-treated subjects. Principal component analysis within this data set determined the sixth hour as a critical time point separating development and recovery phases of the LPS-induced metabolic changes. Consensus clustering of the differential metabolites identified two distinct subsets of metabolites that displayed common coherent profiles with opposing directionality. The first group of metabolites, which were mostly associated with pathways related to lipid metabolism, was upregulated within the first 6 h and downregulated by the 24th hour following LPS administration. The second group of metabolites, in contrast, was first downregulated until the sixth hour, then upregulated. Metabolites in this group were predominantly amino acids or their derivatives. In summary, nontargeted biochemical profiling and unsupervised multivariate analyses highlighted the prominent roles of lipid and protein metabolism in regulating the response to systemic inflammation while also revealing their dynamics in opposite directions.
Project description:ObjectiveThe early diagnosis of rheumatoid arthritis (RA) is desirable to install treatment to prevent disease progression and joint destruction. Autoantibodies and immunological markers pre-date the onset of symptoms by years albeit not all patients will present these factors, even at disease onset. Additional biomarkers would be of high value to improve early diagnosis and understanding of the process, leading to disease development.MethodsPlasma samples donated before the onset of RA were identified in the Biobank of Northern Sweden, a collection within national health survey programs. Thirty samples from pre-symptomatic individuals and nineteen from controls were subjected to liquid chromatography-mass spectrometry (LCMS) metabolite and lipid profiling. Lipid and metabolite profiles discriminating samples from pre-symptomatic individuals from controls were identified after univariate and multivariate OPLS-DA based analyses.ResultsThe OPLS-DA models including pre-symptomatic individuals and controls identified profiles differentiating between the groups that was characterized by lower levels of acyl-carnitines and fatty acids, with higher levels of lysophospatidylcholines (LPCs) and metabolites from tryptophan metabolism in pre-symptomatic individuals compared with controls. Lipid profiling showed that the majority of phospholipids and sphingomyelins were at higher levels in pre-symptomatic individuals in comparison with controls.ConclusionsOur LCMS based approach demonstrated that there are changes in small molecule and lipid profiles detectable in plasma samples collected from the pre-symptomatic individuals who subsequently developed RA, which point to an up-regulation of levels of lysophospatidylcholines, and of tryptophan metabolism, perturbation of fatty acid beta-oxidation and increased oxidative stress in pre-symptomatic individuals' years before onset of symptoms.
Project description:To investigate the effect of indole on protection against colon injury and the role of IDO1 expression, we examined the effect of indole on hIDO1-overexpressing and empty vector control HCT116 cells by global gene expression profiling. Examination of mRNA levels from hIDO1-overexpressing and control HCT116 cell lines treated with 1mM indole or DMF for 24 hours using two replicates each.
Project description:Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers. Developing biomarkers for early detection and chemotherapeutic response prediction is crucial to improve the dismal prognosis of PDAC patients. However, molecular cancer signatures based on transcriptome analysis do not reflect intratumoral heterogeneity. To explore a more accurate stratification of PDAC phenotypes in an easily accessible matrix, plasma metabolome analysis using MxP® Global Profiling and MxP® Lipidomics was performed in 361 PDAC patients. We identified three metabolic PDAC subtypes associated with distinct complex lipid patterns. Subtype 1 was associated with reduced ceramide levels and a strong enrichment of triacylglycerols. Subtype 2 demonstrated increased abundance of ceramides, sphingomyelin and other complex sphingolipids, whereas subtype 3 showed decreased levels of sphingolipid metabolites in plasma. Pathway enrichment analysis revealed that sphingolipid-related pathways differ most among subtypes. Weighted correlation network analysis (WGCNA) implied PDAC subtypes differed in their metabolic programs. Interestingly, a reduced expression among related pathway genes in tumor tissue was associated with the lowest survival rate. However, our metabolic PDAC subtypes did not show any correlation to the described molecular PDAC subtypes. Our findings pave the way for further studies investigating sphingolipids metabolisms in PDAC.
Project description:ObjectiveThe aim of the study was to investigate the associations of amino acids and other polar metabolites with metabolic syndrome (MetS) in postmenopausal women in a lean Asian population.MethodsThe participants were 1,422 female residents enrolled in a cohort study from April to August 2012. MetS was defined according to the National Cholesterol Education Program Adult Treatment Panel III modified for Japanese women. Associations were examined between MetS and 78 metabolites assayed in fasting plasma samples using capillary electrophoresis-mass spectrometry. Replication analysis was performed to confirm the robustness of the results in a separate population created by random allocation.ResultsAnalysis was performed for 877 naturally postmenopausal women, including 594 in the original population and 283 in the replication population. The average age, body mass index, and levels of high- and low-density lipoprotein cholesterol of the entire population were 64.6 years, 23.0?kg/m, 72.1?mg/dL, and 126.1?mg/dL, respectively. There was no significant difference in low-density lipoprotein cholesterol levels between women with and without MetS. Thirteen metabolites were significantly related to MetS: multiple plasma amino acids were elevated in women with MetS, including branched-chain amino acids, alanine, glutamate, and proline; and alpha-aminoadipate, which is generated by lysine degradation, was also significantly increased.ConclusionsOur large-scale metabolomic profiling indicates that Japanese postmenopausal women with MetS have abnormal polar metabolites, suggesting altered catabolic pathways. These results may help to understand metabolic disturbance, including in persons with normal body mass index and relatively high levels of high-density lipoprotein cholesterol, and may have clinical utility based on further studies.
Project description:BackgroundMalignant mesothelioma (MM) is a cancer caused mainly by asbestos exposure, and is aggressive and incurable. This study aimed to identify differential metabolites and metabolic pathways involved in the pathogenesis and diagnosis of malignant mesothelioma.MethodsBy using gas chromatography-mass spectrometry (GC-MS), this study examined the plasma metabolic profile of human malignant mesothelioma. We performed univariate and multivariate analyses and pathway analyses to identify differential metabolites, enriched metabolism pathways, and potential metabolic targets. The area under the receiver-operating curve (AUC) criterion was used to identify possible plasma biomarkers.ResultsUsing samples from MM (n = 19) and healthy control (n = 22) participants, 20 metabolites were annotated. Seven metabolic pathways were disrupted, involving alanine, aspartate, and glutamate metabolism; glyoxylate and dicarboxylate metabolism; arginine and proline metabolism; butanoate and histidine metabolism; beta-alanine metabolism; and pentose phosphate metabolic pathway. The AUC was used to identify potential plasma biomarkers. Using a threshold of AUC = 0.9, five metabolites were identified, including xanthurenic acid, (s)-3,4-hydroxybutyric acid, D-arabinose, gluconic acid, and beta-d-glucopyranuronic acid.ConclusionsTo the best of our knowledge, this is the first report of a plasma metabolomics analysis using GC-MS analyses of Asian MM patients. Our identification of these metabolic abnormalities is critical for identifying plasma biomarkers in patients with MM. However, additional research using a larger population is needed to validate our findings.
Project description:Antenatal depression affects ~9-19% of pregnant women and can exert persistent adverse effects on both mother and child. There is a need for a deeper understanding of antenatal depression mechanisms and the development of tools for reliable diagnosis and early identification of women at high risk. As the use of untargeted blood metabolomics in the investigation of psychiatric and neurological diseases has increased substantially, the main objective of this study was to investigate whether untargeted gas chromatography-mass spectrometry (GC-MS) plasma metabolomics in 45 women in late pregnancy, residing in Uppsala, Sweden, could indicate metabolic differences between women with and without depressive symptoms. Furthermore, seasonal differences in the metabolic profiles were explored. When comparing the profiles of cases with controls, independently of season, no differences were observed. However, seasonal differences were observed in the metabolic profiles of control samples, suggesting a favorable cardiometabolic profile in the summer vs. winter, as indicated by lower glucose and sugar acid concentrations and lactate to pyruvate ratio, and higher abundance of arginine and phosphate. Similar differences were identified between cases and controls among summer pregnancies, indicating an association between a stressed metabolism and depressive symptoms. No depression-specific differences were apparent among depressed and non-depressed women, in the winter pregnancies; this could be attributed to an already stressed metabolism due to the winter living conditions. Our results provide new insights into the pathophysiology of antenatal depression, and warrant further investigation of the use of metabolomics in antenatal depression in larger cohorts.
Project description:Background: Major depressive disorder (MDD) is a common disease which is complicated by metabolic disorder. Although MDD has been studied relatively intensively, its metabolism is yet to be elucidated. Methods: To profile the global pathophysiological processes of MDD patients, we used metabolomics to identify differential metabolites and applied a new database Metabolite set enrichment analysis (MSEA) to discover dysfunctions of metabolic pathways of this disease. Hydrophilic metabolomics were applied to identify metabolites by profiling the plasma from 55 MDD patients and 100 sex-, gender-, BMI-matched healthy controls. The metabolites were then analyzed in MSEA in an attempt to discover different metabolic pathways. To investigate dysregulated pathways, we further divided MDD patients into two cohorts: (1) MDD patients with anxiety symptoms and (2) MDD patients without anxiety symptoms. Results: Metabolites which were hit in those pathways correlated with depressive and anxiety symptoms. Altogether, 17 metabolic pathways were enriched in MDD patients, and 23 metabolites were hit in those pathways. Three metabolic pathways were enriched in MDD patients without anxiety, including glycine and serine metabolism, arginine and proline metabolism, and phenylalanine and tyrosine metabolism. In addition, L-glutamic acid was positively correlated with the severity of depression and retardation if hit in MDD patients without anxiety symptoms. Conclusions: Different kinds of metabolic pathophysiological processes were found in MDD patients. Disorder of glycine and serine metabolism was observed in both MDD patients with anxiety and those without.