Project description:Liquid chromatography-high-resolution mass spectrometry (LC-MS)-based metabolomics aims to identify and quantify all metabolites, but most LC-MS peaks remain unidentified. Here we present a global network optimization approach, NetID, to annotate untargeted LC-MS metabolomics data. The approach aims to generate, for all experimentally observed ion peaks, annotations that match the measured masses, retention times and (when available) tandem mass spectrometry fragmentation patterns. Peaks are connected based on mass differences reflecting adduction, fragmentation, isotopes, or feasible biochemical transformations. Global optimization generates a single network linking most observed ion peaks, enhances peak assignment accuracy, and produces chemically informative peak-peak relationships, including for peaks lacking tandem mass spectrometry spectra. Applying this approach to yeast and mouse data, we identified five previously unrecognized metabolites (thiamine derivatives and N-glucosyl-taurine). Isotope tracer studies indicate active flux through these metabolites. Thus, NetID applies existing metabolomic knowledge and global optimization to substantially improve annotation coverage and accuracy in untargeted metabolomics datasets, facilitating metabolite discovery.
Project description:Studies of isotopically labeled compounds have been fundamental to understanding metabolic pathways and fluxes. They have traditionally, however, been used in conjunction with targeted analyses that identify and quantify a limited number of labeled downstream metabolites. Here we describe an alternative workflow that leverages recent advances in untargeted metabolomic technologies to track the fates of isotopically labeled metabolites in a global, unbiased manner. This untargeted approach can be applied to discover novel biochemical pathways and characterize changes in the fates of labeled metabolites as a function of altered biological conditions such as disease. To facilitate the data analysis, we introduce X(13)CMS, an extension of the widely used mass spectrometry-based metabolomic software package XCMS. X(13)CMS uses the XCMS platform to detect metabolite peaks and perform retention-time alignment in liquid chromatography/mass spectrometry (LC/MS) data. With the use of the XCMS output, the program then identifies isotopologue groups that correspond to isotopically labeled compounds. The retrieval of these groups is done without any a priori knowledge besides the following input parameters: (i) the mass difference between the unlabeled and labeled isotopes, (ii) the mass accuracy of the instrument used in the analysis, and (iii) the estimated retention-time reproducibility of the chromatographic method. Despite its name, X(13)CMS can be used to track any isotopic label. Additionally, it detects differential labeling patterns in biological samples collected from parallel control and experimental conditions. We validated the ability of X(13)CMS to accurately retrieve labeled metabolites from complex biological matrices both with targeted LC/MS/MS analysis of a subset of the hits identified by the program and with labeled standards spiked into cell extracts. We demonstrate the full functionality of X(13)CMS with an analysis of cultured rat astrocytes treated with uniformly labeled (U-)(13)C-glucose during lipopolysaccharide (LPS) challenge. Our results show that out of 223 isotopologue groups enriched from U-(13)C-glucose, 95 have statistically significant differential labeling patterns in astrocytes challenged with LPS compared to unchallenged control cells. Only two of these groups overlap with the 32 differentially regulated peaks identified by XCMS, indicating that X(13)CMS uncovers different and complementary information from untargeted metabolomic studies. Like XCMS, X(13)CMS is implemented in R. It is available from our laboratory website at http://pattilab.wustl.edu/x13cms.php .
Project description:The rapidly increasing number of engineered nanoparticles (NPs), and products containing NPs, raises concerns for human exposure and safety. With this increasing, and ever changing, catalogue of NPs it is becoming more difficult to adequately assess the toxic potential of new materials in a timely fashion. It is therefore important to develop methods which can provide high-throughput screening of biological responses. The use of omics technologies, including metabolomics, can play a vital role in this process by providing relatively fast, comprehensive, and cost-effective assessment of cellular responses. These techniques thus provide the opportunity to identify specific toxicity pathways and to generate hypotheses on how to reduce or abolish toxicity.We have used untargeted metabolome analysis to determine differentially expressed metabolites in human lung epithelial cells (A549) exposed to copper oxide nanoparticles (CuO NPs). Toxicity hypotheses were then generated based on the affected pathways, and critically tested using more conventional biochemical and cellular assays. CuO NPs induced regulation of metabolites involved in oxidative stress, hypertonic stress, and apoptosis. The involvement of oxidative stress was clarified more easily than apoptosis, which involved control experiments to confirm specific metabolites that could be used as standard markers for apoptosis; based on this we tentatively propose methylnicotinamide as a generic metabolic marker for apoptosis.Our findings are well aligned with the current literature on CuO NP toxicity. We thus believe that untargeted metabolomics profiling is a suitable tool for NP toxicity screening and hypothesis generation.
Project description:Oncogene-associated metabolic signatures in prostate cancer, identified by an integrative analysis of cultured cells and murine and human tumors, suggest that AKT activation results in a glycolytic phenotype whereas MYC induces aberrant lipid metabolism. Heterogeneity in human tumors makes this simplistic interpretation obtained from experimental models more challenging. Metabolic reprogramming as a function of distinct molecular aberrations has major diagnostic and therapeutic implications.
Project description:Bottromycin A2 is a structurally unique ribosomally synthesized and post-translationally modified peptide (RiPP) that possesses potent antibacterial activity towards multidrug-resistant bacteria. The structural novelty of bottromycin stems from its unprecedented macrocyclic amidine and rare β-methylated amino acid residues. The N-terminus of a precursor peptide (BtmD) is converted into bottromycin A2 by tailoring enzymes encoded in the btm gene cluster. However, little was known about key transformations in this pathway, including the unprecedented macrocyclization. To understand the pathway in detail, an untargeted metabolomic approach that harnesses mass spectral networking was used to assess the metabolomes of a series of pathway mutants. This analysis has yielded key information on the function of a variety of previously uncharacterized biosynthetic enzymes, including a YcaO domain protein and a partner protein that together catalyze the macrocyclization.
Project description:Human milk (HM) is considered the gold standard for infant nutrition. HM contains macro- and micronutrients, as well as a range of bioactive compounds (hormones, growth factors, cell debris, etc.). The analysis of the complex and dynamic composition of HM has been a permanent challenge for researchers. The use of novel, cutting-edge techniques involving different metabolomics platforms has permitted to expand knowledge on the variable composition of HM. This review aims to present the state-of-the-art in untargeted metabolomic studies of HM, with emphasis on sampling, extraction and analysis steps. Workflows available from the literature have been critically revised and compared, including a comprehensive assessment of the achievable metabolome coverage. Based on the scientific evidence available, recommendations for future untargeted HM metabolomics studies are included.