Project description:Untargeted metabolomics is an essential component of systems biology research, but it is plagued by a high proportion of detectable features not identified with a chemical structure. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) experiments produce spectra that can be searched against databases to help identify or classify these unknowns, but many features do not generate spectra of sufficient quality to enable successful annotation. Here, we explore alterations to gradient length, mass loading, and rolling precursor ion exclusion parameters for reversed phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC) that improve compound identification performance for human plasma samples. A manual review of spectral matches from the HILIC data set was used to determine reasonable thresholds for search score and other metrics to enable semi-automated MS/MS data analysis. Compared to typical LC-MS/MS conditions, methods adapted for compound identification increased the total number of unique metabolites that could be matched to a spectral database from 214 to 2052. Following data alignment, 68.0% of newly identified features from the modified conditions could be detected and quantitated using a routine 20-min LC-MS run. Finally, a localized machine learning model was developed to classify the remaining unknowns and select a subset that shared spectral characteristics with successfully identified features. A total of 576 and 749 unidentified features in the HILIC and RPLC data sets were classified by the model as high-priority unknowns or higher-importance targets for follow-up analysis. Overall, our study presents a simple strategy to more deeply annotate untargeted metabolomics data for a modest additional investment of time and sample.
Project description:Metabolomics is a powerful systems biology approach that monitors changes in biomolecule concentrations to diagnose and monitor health and disease. However, leading metabolomics technologies, such as NMR and mass spectrometry (MS), access only a small portion of the metabolome. Now an approach is presented that uses the high sensitivity and chemical specificity of surface-enhanced Raman scattering (SERS) for online detection of metabolites from tumor lysates following liquid chromatography (LC). The results demonstrate that this LC-SERS approach has metabolite detection capabilities comparable to the state-of-art LC-MS but suggest a selectivity for the detection of a different subset of metabolites. Analysis of replicate LC-SERS experiments exhibit reproducible metabolite patterns that can be converted into barcodes, which can differentiate different tumor models. Our work demonstrates the potential of LC-SERS technology for metabolomics-based diagnosis and treatment of cancer.
Project description:Untargeted metabolomic analysis is a powerful tool used for the discovery of novel biomarkers. Chagas disease (CD), caused by Trypanosoma cruzi, is a neglected tropical disease that affects 6-7 million people with approximately 30% developing cardiac manifestations. The most significant clinical challenge lies in its long latency period after acute infection, and the lack of surrogate markers to predict disease progression or cure. In this cross-sectional study, we analyzed sera from 120 individuals divided into four groups: 31 indeterminate CD, 41 chronic chagasic cardiomyopathy (CCC), 18 Latin Americans with other cardiomyopathies and 30 healthy volunteers. Using a high-throughput panel of 986 metabolites, we identified three distinct profiles among individuals with cardiomyopathy, indeterminate CD and healthy volunteers. After a more stringent analysis, we identified some potential biomarkers. Among peptides, phenylacetylglutamine and fibrinopeptide B (1-13) exhibited an increasing trend from controls to ICD and CCC. Conversely, reduced levels of bilirubin and biliverdin alongside elevated urobilin correlated with disease progression. Finally, elevated levels of cystathionine, phenol glucuronide and vanillactate among amino acids distinguished CCC individuals from ICD and controls. Our novel exploratory study using metabolomics identified potential biomarker candidates, either alone or in combination that if confirmed, can be translated into clinical practice.
Project description:Integration of multiple datasets can greatly enhance bioanalytical studies, for example, by increasing power to discover and validate biomarkers. In liquid chromatography-mass spectrometry (LC-MS) metabolomics, it is especially hard to combine untargeted datasets since the majority of metabolomic features are not annotated and thus cannot be matched by chemical identity. Typically, the information available for each feature is retention time (RT), mass-to-charge ratio (m/z), and feature intensity (FI). Pairs of features from the same metabolite in separate datasets can exhibit small but significant differences, making matching very challenging. Current methods to address this issue are too simple or rely on assumptions that cannot be met in all cases. We present a method to find feature correspondence between two similar LC-MS metabolomics experiments or batches using only the features' RT, m/z, and FI. We demonstrate the method on both real and synthetic datasets, using six orthogonal validation strategies to gauge the matching quality. In our main example, 4953 features were uniquely matched, of which 585 (96.8%) of 604 manually annotated features were correct. In a second example, 2324 features could be uniquely matched, with 79 (90.8%) out of 87 annotated features correctly matched. Most of the missed annotated matches are between features that behave very differently from modeled inter-dataset shifts of RT, MZ, and FI. In a third example with simulated data with 4755 features per dataset, 99.6% of the matches were correct. Finally, the results of matching three other dataset pairs using our method are compared with a published alternative method, metabCombiner, showing the advantages of our approach. The method can be applied using M2S (Match 2 Sets), a free, open-source MATLAB toolbox, available at https://github.com/rjdossan/M2S.
Project description:Large-scale metabolomics assays are widely used in epidemiology for biomarker discovery and risk assessments. However, systematic errors introduced by instrumental signal drifting pose a big challenge in large-scale assays, especially for derivatization-based gas chromatography-mass spectrometry (GC-MS). Here, we compare the results of different normalization methods for a study with more than 4000 human plasma samples involved in a type 2 diabetes cohort study, in addition to 413 pooled quality control (QC) samples, 413 commercial pooled plasma samples, and a set of 25 stable isotope-labeled internal standards used for every sample. Data acquisition was conducted across 1.2 years, including seven column changes. In total, 413 pooled QC (training) and 413 BioIVT samples (validation) were used for normalization comparisons. Surprisingly, neither internal standards nor sum-based normalizations yielded median precision of less than 30% across all 563 metabolite annotations. While the machine-learning-based SERRF algorithm gave 19% median precision based on the pooled quality control samples, external cross-validation with BioIVT plasma pools yielded a median 34% relative standard deviation (RSD). We developed a new method: systematic error reduction by denoising autoencoder (SERDA). SERDA lowered the median standard deviations of the training QC samples down to 16% RSD, yielding an overall error of 19% RSD when applied to the independent BioIVT validation QC samples. This is the largest study on GC-MS metabolomics ever reported, demonstrating that technical errors can be normalized and handled effectively for this assay. SERDA was further validated on two additional large-scale GC-MS-based human plasma metabolomics studies, confirming the superior performance of SERDA over SERRF or sum normalizations.
Project description:Canine pyometra frequently occurs in middle-aged to older intact bitches, which seriously affects the life of dogs and brings an economic loss to their owners. Hence, finding a key metabolite is very important for the diagnosis and development of a new safe and effective therapy for the disease. In this study, dogs with pyometra were identified by blood examinations, laboratory analyses and diagnostic imaging, and fifteen endometrium tissues of sick dogs with pyometra and fifteen controls were collected and their metabolites were identified utilizing a UHPLC-qTOF-MS-based untargeted metabolomics approach. The results indicated that the elevated inflammatory cells were observed in dogs with pyometra, suggesting that sick dogs suffered systemic inflammation. In the untargeted metabolic profile, 705 ion features in the positive polarity mode and 414 ion features in the negative polarity mode were obtained in endometrium tissues of sick dogs with pyometra, with a total of 275 differential metabolites (173 in positive and 102 in negative polarity modes). Moreover, the multivariate statistical analyses such as PCA and PLS-DA also showed that the metabolites were significantly different between the two groups. Then, these differential metabolites were subjected to pathway analysis using Metaboanalyst 4.0, and Galactose metabolism, cAMP signaling pathway and Glycerophospholipid metabolism were enriched, proving some insights into the metabolic changes during pyometra. Moreover, the receiver operating characteristic curves further confirmed kynurenic acid was expected to be a candidate biomarker of canine pyometra. In conclusion, this study provided a new idea for exploring early diagnosis methods and a safe and effective therapy for canine pyometra.
Project description:Adulteration remains an issue in the dietary supplement industry, including botanical supplements. While it is common to employ a targeted analysis to detect known adulterants, this is difficult when little is known about the sample set. With this study, untargeted metabolomics using liquid chromatography coupled to ultraviolet-visible spectroscopy (LC-UV) or high-resolution mass spectrometry (LC-MS) was employed to detect adulteration in botanical dietary supplements. A training set was prepared by combining Hydrastis canadensis L. with a known adulterant, Coptis chinensis Franch., in ratios ranging from 5 to 95% adulteration. The metabolomics datasets were analyzed using both unsupervised (principal component analysis and composite score) and supervised (SIMCA) techniques. Palmatine, a known H. canadensis metabolite, was quantified as a targeted analysis comparison. While the targeted analysis was the most sensitive method tested in detecting adulteration, statistical analyses of the untargeted metabolomics datasets detected adulteration of the goldenseal samples, with SIMCA providing the greatest discriminating potential. Graphical abstract.
Project description:BackgroundThe COVID-19 pandemic is likely to represent an ongoing global health issue given the potential for new variants, vaccine escape and the low likelihood of eliminating all reservoirs of the disease. Whilst diagnostic testing has progressed at a fast pace, the metabolic drivers of outcomes-and whether markers can be found in different biofluids-are not well understood. Recent research has shown that serum metabolomics has potential for prognosis of disease progression. In a hospital setting, collection of saliva samples is more convenient for both staff and patients, and therefore offers an alternative sampling matrix to serum.MethodsSaliva samples were collected from hospitalised patients with clinical suspicion of COVID-19, alongside clinical metadata. COVID-19 diagnosis was confirmed using RT-PCR testing, and COVID-19 severity was classified using clinical descriptors (respiratory rate, peripheral oxygen saturation score and C-reactive protein levels). Metabolites were extracted and analysed using high resolution liquid chromatography-mass spectrometry, and the resulting peak area matrix was analysed using multivariate techniques.ResultsPositive percent agreement of 1.00 between a partial least squares-discriminant analysis metabolomics model employing a panel of 6 features (5 of which were amino acids, one that could be identified by formula only) and the clinical diagnosis of COVID-19 severity was achieved. The negative percent agreement with the clinical severity diagnosis was also 1.00, leading to an area under receiver operating characteristics curve of 1.00 for the panel of features identified.ConclusionsIn this exploratory work, we found that saliva metabolomics and in particular amino acids can be capable of separating high severity COVID-19 patients from low severity COVID-19 patients. This expands the atlas of COVID-19 metabolic dysregulation and could in future offer the basis of a quick and non-invasive means of sampling patients, intended to supplement existing clinical tests, with the goal of offering timely treatment to patients with potentially poor outcomes.