Project description:Highlights•The mechanical complications of acute myocardial infarction (AMI) can be catastrophic.•A Gerbode type defect after AMI is rare.•Surgery is the mainstay of treatment, but percutaneous options are available.•Gerbode defects can be congenital or acquired and can be closed percutaneously.•Echocardiography reliably evaluates the mechanical complications of AMI.
Project description:Calcium/calmodulin-dependent protein kinase II (CaMKII) was suggested to mediate ischemic myocardial injury and adverse cardiac remodeling. However, the specific functions of the CaMKII isoforms and splice variants in ischemia/reperfusion (I/R) injury have not been investigated yet. Thus, we studied the roles of the CaMKII isoforms and splice variants in I/R by the use of various CaMKII mutant mice. CaMKIIδC was up-regulated already one day after I/R injury but surprisingly, acute I/R injury was neither affected in CaMKIIδ-deficient mice, CaMKIIδ-deficient mice in which the splice variants CaMKIIδB and C were re-expressed nor in conditional CaMKIIδ/γ double-knockout mice (DKO). In contrast, 5 weeks after I/R, DKO mice were protected against extensive scar formation and cardiac dysfunction. Leukocyte infiltration was not altered one day but five days after I/R, explaining the late effects of CaMKII deletion on post-I/R remodeling. Other than reported before, we demonstrate that CaMKII is not critically involved in the immediate mechanisms that regulate acute I/R injury but in the process of post-infarct remodeling. We analysed 6 groups in total: 3 groups from wild-type control animals and 3 groups from CaMKII delta/gamma double-KO mice. Sham operated animals served as controls in both wild-type and KO animal groups. 2 different time points in ischia/reperfusion operated animals were investigated: 1 day and 5 days post-surgery.
Project description:BackgroundAbout 6 million Americans suffer from heart failure and 70% of heart failure cases are caused by myocardial infarction (MI). Following myocardial infarction, increased cytokines induce two major types of macrophages: classically activated macrophages which contribute to extracellular matrix destruction and alternatively activated macrophages which contribute to extracellular matrix construction. Though experimental results have shown the transitions between these two types of macrophages, little is known about the dynamic progression of macrophages activation. Therefore, the objective of this study is to analyze macrophage activation patterns post-MI.ResultsWe have collected experimental data from adult C57 mice and built a framework to represent the regulatory relationships among cytokines and macrophages. A set of differential equations were established to characterize the regulatory relationships for macrophage activation in the left ventricle post-MI based on the physical chemistry laws. We further validated the mathematical model by comparing our computational results with experimental results reported in the literature. By applying Lyaponuv stability analysis, the established mathematical model demonstrated global stability in homeostasis situation and bounded response to myocardial infarction.ConclusionsWe have established and validated a mathematical model for macrophage activation post-MI. The stability analysis provided a possible strategy to intervene the balance of classically and alternatively activated macrophages in this study. The results will lay a strong foundation to understand the mechanisms of left ventricular remodelling post-MI.
Project description:Calcium/calmodulin-dependent protein kinase II (CaMKII) was suggested to mediate ischemic myocardial injury and adverse cardiac remodeling. However, the specific functions of the CaMKII isoforms and splice variants in ischemia/reperfusion (I/R) injury have not been investigated yet. Thus, we studied the roles of the CaMKII isoforms and splice variants in I/R by the use of various CaMKII mutant mice. CaMKIIδC was up-regulated already one day after I/R injury but surprisingly, acute I/R injury was neither affected in CaMKIIδ-deficient mice, CaMKIIδ-deficient mice in which the splice variants CaMKIIδB and C were re-expressed nor in conditional CaMKIIδ/γ double-knockout mice (DKO). In contrast, 5 weeks after I/R, DKO mice were protected against extensive scar formation and cardiac dysfunction. Leukocyte infiltration was not altered one day but five days after I/R, explaining the late effects of CaMKII deletion on post-I/R remodeling. Other than reported before, we demonstrate that CaMKII is not critically involved in the immediate mechanisms that regulate acute I/R injury but in the process of post-infarct remodeling.
Project description:Ossification of the posterior longitudinal ligament (OPLL) is formed by heterogeneous ossification of posterior longitudinal ligament. The patho-mechanism of OPLL is still largely unknown. MicroRNAs are small nucleatides that function as regulators of gene expression in almost any biological process. However, few microRNAs are reported to have a role in the pathological process of OPLL. Therefore, we performed high-throughput microRNA sequencing and transcriptome sequencing of primary OPLL and PLL cells in order to decipher the interacting network of microRNAs in OPLL. MRNA and microRNA profiles were done using primary culture cells of human ossification of the posterior longitudinal ligament (OPLL) tissue and normal posterior longitudinal ligament (PLL) tissue.
Project description:To test the hypothesis that early exercise training after myocardial infarction (MI) could preserve cardiac function, alleviate left ventricular (LV) remodeling and induce a protective effect on morphology, male Sprague-Dawley rats underwent coronary ligation or sham operation, and were assigned to 3 groups: Sham, sedentary MI (SedMI), and exercise MI (ExMI). We measured the changes in collagen volume fraction, matrix metalloproteinase (MMP) 1, tissue inhibitor matrix metalloproteinase 1 (TIMP-1), angiotensin II receptor type 1 (AT1), and angiotensin converting enzyme (ACE) at gene and protein levels after 8 weeks of exercise training. Cardiac functions were determined by echocardiographic and hemodynamic measurements. Early exercise training after MI had no effect on LV wall thinning. Cardiac function was significantly preserved in the ExMI group in comparison to the SedMI group. The collagen volume fraction in the ExMI group was significantly lower than in the SedMI group. Compared to the SedMI group, the ExMI group showed a markedly decrease at both the gene and protein levels in TIMP-1 (P<0.05). No significant differences were found in MMP-1 among the three groups. MMP-1/TIMP-1 ratio in the ExMI group was significantly higher than in the SedMI group. In addition, the expression of AT1 protein in the ExMI group was significantly lower than in the SedMI group. Furthermore, both ACE mRNA expression and ACE binding in the ExMI group are significantly decreased compared to the SedMI group. Our results suggest that early exercise training after MI reduces TIMP-1 expression, improves the balance between MMPs and TIMPs, and mitigates the expressions of ACE and AT1 receptor. These improvements, in turn, attenuate myocardial fibrosis and preserve post-MI cardiac function.
Project description:Despite substantial declines in mortality following myocardial infarction (MI), subsequent left ventricular remodeling (LVRm) remains a significant long-term complication. Extracellular small non-coding RNAs (exRNAs) have been associated with cardiac inflammation and fibrosis and we hypothesized that they are associated with post-MI LVRm phenotypes. RNA sequencing of exRNAs was performed on plasma samples from patients with "beneficial" (decrease LVESVI ≥ 20%, n = 11) and "adverse" (increase LVESVI ≥ 15%, n = 11) LVRm. Selected differentially expressed exRNAs were validated by RT-qPCR (n = 331) and analyzed for their association with LVRm determined by cardiac MRI. Principal components of exRNAs were associated with LVRm phenotypes post-MI; specifically, LV mass, LV ejection fraction, LV end systolic volume index, and fibrosis. We then investigated the temporal regulation and cellular origin of exRNAs in murine and cell models and found that: 1) plasma and tissue miRNA expression was temporally regulated; 2) the majority of the miRNAs were increased acutely in tissue and at sub-acute or chronic time-points in plasma; 3) miRNA expression was cell-specific; and 4) cardiomyocytes release a subset of the identified miRNAs packaged in exosomes into culture media in response to hypoxia/reoxygenation. In conclusion, we find that plasma exRNAs are temporally regulated and are associated with measures of post-MI LVRm.
Project description:This experiment focused on studying the impact of myocardial infarction on bone marrow monocytes. Human sternal bone marrow was extracted from the sternum of acute and chronic patients who had undergone myocardial infarction, as well as from control patients, during surgical procedures. The samples underwent Ficoll separation and were subsequently frozen for preservation. On the day of sorting, the samples were thawn, and a total of 3,000 - 20,000 human bone marrow monocytes (Lineage-, CD45+, HLA-DR+) were sorted in 2% BSA in PBS in two biological replicates. scRNA-seq was performed.
Project description:CaMKII was suggested to mediate ischemic myocardial injury and adverse cardiac remodeling. Here, we investigated the roles of different CaMKII isoforms and splice variants in ischemia/reperfusion (I/R) injury by the use of new genetic CaMKII mouse models. Although CaMKIIδC was upregulated 1 day after I/R injury, cardiac damage 1 day after I/R was neither affected in CaMKIIδ-deficient mice, CaMKIIδ-deficient mice in which the splice variants CaMKIIδB and C were re-expressed, nor in cardiomyocyte-specific CaMKIIδ/γ double knockout mice (DKO). In contrast, 5 weeks after I/R, DKO mice were protected against extensive scar formation and cardiac dysfunction, which was associated with reduced leukocyte infiltration and attenuated expression of members of the chemokine (C-C motif) ligand family, in particular CCL3 (macrophage inflammatory protein-1α, MIP-1α). Intriguingly, CaMKII was sufficient and required to induce CCL3 expression in isolated cardiomyocytes, indicating a cardiomyocyte autonomous effect. We propose that CaMKII-dependent chemoattractant signaling explains the effects on post-I/R remodeling. Taken together, we demonstrate that CaMKII is not critically involved in acute I/R-induced damage but in the process of post-infarct remodeling and inflammatory processes.
Project description:Galectin-1 (Gal-1), an evolutionarily conserved ?-galactoside-binding lectin, plays essential roles in the control of inflammation and neovascularization. Although identified as a major component of the contractile apparatus of cardiomyocytes, the potential role of Gal-1 in modulating heart pathophysiology is uncertain. Here, we aimed to characterize Gal-1 expression and function in the infarcted heart. Expression of Gal-1 was substantially increased in the mouse heart 7 days after acute myocardial infarction (AMI) and in hearts from patients with end-stage chronic heart failure. This lectin was localized mainly in cardiomyocytes and inflammatory infiltrates in peri-infarct areas, but not in remote areas. Both simulated hypoxia and proinflammatory cytokines selectively up-regulated Gal-1 expression in mouse cardiomyocytes, whereas anti-inflammatory cytokines inhibited expression of this lectin or had no considerable effect. Compared with their wild-type counterpart, Gal-1-deficient (Lgals1(-/-)) mice showed enhanced cardiac inflammation, characterized by increased numbers of macrophages, natural killer cells, and total T cells, but reduced frequency of regulatory T cells, leading to impaired cardiac function at baseline and impaired ventricular remodeling 7 days after nonreperfused AMI. Treatment of mice with recombinant Gal-1 attenuated cardiac damage in reperfused AMI. Taken together, our results indicate a protective role for Gal-1 in normal cardiac homeostasis and postinfarction remodeling by preventing cardiac inflammation. Thus, Gal-1 treatment represents a potential novel strategy to attenuate heart failure in AMI.