Project description:In order to determine whether dis-regulation of a genetic pathway could explain the increased apoptosis of parp-2-/- double positive thymocytes, the gene expression profiles in double positive thymocytes derived from wild-type and parp-2-/- mice were analysed using Affymetrix oligonucleotide chips (mouse genome 430 2.0).
Project description:Brown adipose tissue (BAT) is best known for thermogenesis. Whereas numerous studies in rodents found tight associations between the metabolic benefits of BAT and enhanced whole-body energy expenditure, emerging evidence in humans suggests that BAT is protective against Type 2 diabetes independent of body-weight. The underlying mechanism for this dissociation remained unclear. Here, we report that impaired mitochondrial flux of branched-chain amino acids (BCAA) in BAT, by deleting mitochondrial BCAA carrier (MBC, encoded by Slc25a44), was sufficient to cause systemic insulin resistance without affecting whole-body energy expenditure or body-weight. We found that brown adipocytes catabolized BCAAs in the mitochondria as essential nitrogen donors for the biosynthesis of glutamate, N-acetylated amino acids, and one of the products, glutathione. BAT-selective impairment in mitochondrial BCAA flux led to elevated oxidative stress and insulin resistance in the liver, accompanied by reduced levels of BCAA-nitrogen derived metabolites in the circulation. In turn, supplementation of glutathione restored insulin sensitivity of BAT-specific MBC knockout mice. Notably, a high-fat diet rapidly impaired BCAA catabolism and the synthesis of BCAA-nitrogen derived metabolites in the BAT, while cold-induced BAT activity is coupled with an active synthesis of these metabolites. Together, the present work uncovers a mechanism through which brown fat controls metabolic health independent of thermogenesis via BCAA-derived nitrogen carriers acting on the liver.
Project description:This study consists of 10 whole genome RNA-seq profiles which have been generated from blood samples collected from ten different volunteers in the Personal Genome Project UK
Project description:Ossification of the posterior longitudinal ligament (OPLL) is formed by heterogeneous ossification of posterior longitudinal ligament. The patho-mechanism of OPLL is still largely unknown. MicroRNAs are small nucleatides that function as regulators of gene expression in almost any biological process. However, few microRNAs are reported to have a role in the pathological process of OPLL. Therefore, we performed high-throughput microRNA sequencing and transcriptome sequencing of primary OPLL and PLL cells in order to decipher the interacting network of microRNAs in OPLL. MRNA and microRNA profiles were done using primary culture cells of human ossification of the posterior longitudinal ligament (OPLL) tissue and normal posterior longitudinal ligament (PLL) tissue.
Project description:Cardoon (Cynara cardunculus L.) is a Mediterranean plant and member of the Asteraceae family that includes three botanical taxa, the wild perennial cardoon (C. cardunculus L. var. sylvestris (Lamk) Fiori), globe artichoke (C. cardunculus L. var. scolymus L. Fiori), and domesticated cardoon (C. cardunculus L. var. altilis DC.). Cardoon has been widely used in the Mediterranean diet and folk medicine since ancient times. Today, cardoon is recognized as a plant with great industrial potential and is considered as a functional food, with important nutritional value, being an interesting source of bioactive compounds, such as phenolics, minerals, inulin, fiber, and sesquiterpene lactones. These bioactive compounds have been vastly described in the literature, exhibiting a wide range of beneficial effects, such as antimicrobial, anti-inflammatory, anticancer, antioxidant, lipid-lowering, cytotoxic, antidiabetic, antihemorrhoidal, cardiotonic, and choleretic activity. In this review, an overview of the cardoon nutritional and phytochemical composition, as well as its biological potential, is provided, highlighting the main therapeutic effects of the different parts of the cardoon plant on metabolic disorders, specifically associated with hepatoprotective, hypolipidemic, and antidiabetic activity.