Project description:Repairing oxidative-targeted macromolecules is a central mechanism necessary for living organisms to adapt to oxidative stress. Reactive oxygen and chlorine species preferentially oxidize sulfur-containing amino acids in proteins. Among these amino acids, methionine can be converted into methionine sulfoxide. This post-translational oxidation can be reversed by methionine sulfoxide reductases, Msr enzymes. In Gram-negative bacteria, the antioxidant MsrPQ system is involved in the repair of periplasmic oxidized proteins. Surprisingly, in this study, we observed in Escherichia coli that msrPQ was highly expressed in the absence of oxygen. We have demonstrated that the anaerobic induction of msrPQ was due to chlorate (ClO3 - ) contamination of the Casamino Acids. Molecular investigation led us to determine that the reduction of chlorate to the toxic oxidizing agent chlorite (ClO2 - ) by the three nitrate reductases (NarA, NarZ, and Nap) led to methionine oxidation of periplasmic proteins. In response to this stress, the E. coli HprSR two-component system was activated, leading to the over-production of MsrPQ. This study, therefore, supports the idea that methionine oxidation in proteins is part of chlorate toxicity, and that MsrPQ can be considered as an anti-chlorate/chlorite defense system in bacteria. Finally, this study challenges the traditional view of the absence of Met-oxidation during anaerobiosis.
Project description:Transcripitonal profiling of Escherichia coli K-12 W3110 comparing cells with and without hydrogen peroxide treatment, two biological replicates each
Project description:Escherichia coli strain MG1655 was grown in a New Brunswick Scientific Bioflow III Biofermentor under continuous culture (chemostat) conditions. Cells were grown in defined media containing 54 mM glycerol as the sole and limiting source of energy and carbon. The working volume was 1 litre, and the dilution rate 0.1 h-1. In order to establish anaerobic growth, nitrogen was sparged through the chemostat medium prior to inoculation and throughout the course of the experiment at a rate of 0.2 l/min. No dissolved oxygen was detectable using the OxyProbe. Sodium fumarate was added to anaerobic medium at a final concentration of 50 mM to act as a terminal electron acceptor. Cells were grown as above to steady-state, At steady-state, NOC-5 and NOC-7 were added to the chemostat culture and to the nutrient feed at a final concentration of 10 uM of each, unless otherwise stated. Samples were taken immediately prior to the addition of NOCs and after a period of 5 min exposure to NOC for subsequent analysis using microarrays. Cells were harvested directly into RNA Protect (Qiagen) to stabilize RNA, and total RNA was purified using Qiagen’s RNeasy Mini kit as recommended by the suppliers. Equal quantities of RNA from control and NOC-supplemented cultures were labelled using nucleotide analogues of dCTP containing either Cy3 or Cy5 fluorescent dyes. The average signal intensity and local background correction were obtained using a commercially available software package from Biodiscovery, Inc (Imagene, version 4.0 and GeneSight, version 3.5). The mean values from each channel were log2 transformed and normalised using the Lowess method to remove intensity-dependent effects in the log2(ratios) values. The Cy3/Cy5 fluorescent ratios were calculated from the normalized values. Keywords: Stress Reponse, Continuous culture, Chemostat, NO, Nitric oxide
Project description:The flavodoxins are flavin mononucleotide-containing electron transferases. Flavodoxin I has been presumed to be the only flavodoxin of Escherichia coli, and its gene, fldA, is known to belong to the soxRS (superoxide response) oxidative stress regulon. An insertion mutation of fldA was constructed and was lethal under both aerobic and anaerobic conditions; only cells that also had an intact (fldA(+)) allele could carry it. A second flavodoxin, flavodoxin II, was postulated, based on the sequence of its gene, fldB. Unlike the fldA mutant, an fldB insertion mutant is a viable prototroph in the presence or absence of oxygen. A high-copy-number fldB(+) plasmid did not complement the fldA mutation. Therefore, there must be a vital function for which FldB cannot substitute for flavodoxin I. An fldB-lacZ fusion was not induced by H(2)O(2) and is therefore not a member of the oxyR regulon. However, it displayed a soxS-dependent induction by paraquat (methyl viologen), and the fldB gene is preceded by two overlapping regions that resemble known soxS binding sites. The fldB insertion mutant did not have an increased sensitivity to the effects of paraquat on either cellular viability or the expression of a soxS-lacZ fusion. Therefore, fldB is a new member of the soxRS (superoxide response) regulon, a group of genes that is induced primarily by univalent oxidants and redox cycling compounds. However, the reactions in which flavodoxin II participates and its role during oxidative stress are unknown.
Project description:Transcripitonal profiling of Escherichia coli K-12 W3110 comparing cells with and without hydrogen peroxide treatment, two biological replicates each One-condition experiment, cells with or without hydrogen peroxide treatment for 10min
Project description:Gene expression profiles of Escherichia coli, grown anaerobically, with or without Acacia mearnsii (Black wattle) extract were compared to identify tannin-resistance strategies. The cell envelope stress protein, spy, and the multidrug transporter-encoding mdtABCD, both under the control of the BaeSR two-component regulatory system, were significantly up-regulated in the presence of tannins. BaeSR mutants were more tannin-sensitive than their wild-type counterparts. Keywords: tannin resistance
Project description:Investigation of whole genome gene expression level changes in a Escherichia coli MG1655 K-12 ∆hns/∆stpA strain from exponental growth under aerobic and anaerobic growth conditions. The results are further described in the article Genome-scale Analysis of E.coli FNR Reveals the Complex Features of Transcrtipion Factor Binding.
Project description:RNA-seq based transcriptome analysis was employed to understand the genome-wide expression patterns under the phytotoxin treatment. To identify differentially expressed genes, we compared phytotoxins (toxoflavin and tropolone) transcriptome to methanol transcriptome as the solvent of phytotoxins. The expression of 2327 and 830 genes was differentially changed by toxoflavin and tropolone, respectively.
Project description:Although fluoride-containing compounds are widely used to inhibit bacterial growth, the reprogramming of gene expression underlying cellular responses to fluoride, especially under anaerobic conditions, is still poorly understood. Here, we compare the genome-wide transcriptomic profiles of E. coli grown in the absence (control) or presence (20 and 70 mM) of sodium fluoride (NaF) under anaerobic conditions and assess the impact of fluoride-dependent ATP depletion on RNA turnover. Tiling array analysis revealed transcripts displaying altered abundance in response to NaF treatments. Quantile-based K-means clustering uncovered a subset of genes that were highly upregulated and then downregulated in response to increased and subsequently decreased fluoride concentrations, many of which (~40%) contained repetitive extragenic palindromic (REP) sequences. Northern blot analysis of some of these highly upregulated REP-containing transcripts (i.e., osmC, proP, efeO and yghA) confirmed their considerably enhanced abundance in response to NaF treatment. An mRNA stability analysis of osmC and yghA transcripts demonstrated that fluoride treatment slows down RNA degradation, thereby enhancing RNA stability and steady-state mRNA levels. Moreover, we demonstrate that turnover of these transcripts depends on RNase E activity and RNA degradosome. Thus, we show that NaF exerts significant effects at the whole-transcriptome level under hypoxic growth (i.e., mimicking the host environment), and fluoride can impact gene expression posttranscriptionally by slowing down ATP-dependent degradation of structured RNAs. IMPORTANCE Gram-negative Escherichia coli is a rod-shaped facultative anaerobic bacterium commonly found in microaerobic/anaerobic environments, including the dental plaques of warm-blooded organisms. These latter can be treated efficiently with fluoride-rich compounds that act as anticaries agents to prevent tooth decay. Although fluoride inhibits microbial growth by affecting metabolic pathways, the molecular mechanisms underlying its activity under anaerobic conditions remain poorly defined. Here, using genome-wide transcriptomics, we explore the impact of fluoride treatments on E. coli gene expression under anaerobic conditions. We reveal key gene clusters associated with cellular responses to fluoride and define its ATP-dependent stabilizing effects on transcripts containing repetitive extragenic palindromic sequences. We demonstrate the mechanisms controlling the RNA stability of these REP-containing mRNAs. Thus, fluoride can affect gene expression posttranscriptionally by stabilizing structured RNAs.