Project description:End-stage kidney disease, the most advanced stage of chronic kidney disease (CKD), requires renal replacement therapy or kidney transplant to sustain life. To accomplish durable dialysis access, the creation of an arteriovenous fistula (AVF) has emerged as a preferred approach. Unfortunately, a significant proportion of patients that receive an AVF experience some form of hand dysfunction; however, the mechanisms underlying these side effects are not understood. In this study, we used nuclear magnetic resonance spectroscopy to investigate the muscle metabolome following iliac AVF placement in mice with CKD. To induce CKD, C57BL6J mice were fed an adenine-supplemented diet for 3 wk and then randomized to receive AVF or sham surgery. Two weeks following surgery, the quadriceps muscles were rapidly dissected and snap frozen for metabolite extraction and subsequent nuclear magnetic resonance analysis. Principal component analysis demonstrated clear separation between groups, confirming a unique metabolome in mice that received an AVF. AVF creation resulted in reduced levels of creatine, ATP, and AMP as well as increased levels of IMP and several tricarboxylic acid cycle metabolites suggesting profound energetic stress. Pearson correlation and multiple linear regression analyses identified several metabolites that were strongly linked to measures of limb function (grip strength, gait speed, and mitochondrial respiration). In summary, AVF creation generates a unique metabolome profile in the distal skeletal muscle indicative of an energetic crisis and myosteatosis.NEW & NOTEWORTHY Creation of an arteriovenous fistula (AVF) is the preferred approach for dialysis access, but some patients experience hand dysfunction after AVF creation. In this study, we provide a detailed metabolomic analysis of the limb muscle in a murine model of AVF. AVF creation resulted in metabolite changes associated with an energetic crisis and myosteatosis that associated with limb function.
Project description:Although assisted reproduction technologies (ARTs) are recognised as safe, and most of the offspring seem apparently healthy, there is clear evidence that ARTs are associated with changes in the embryo's developmental trajectory, which incur physiological consequences during the prenatal and postnatal stages of life. The present study aimed to address the influence of early (day-3 embryos) embryo transfer and cryopreservation on embryo survival, size, and metabolome at the preimplantation stage (day-6 embryos). To this end, fresh-transferred (FT) and vitrified-transferred (VT) embryos were compared using naturally-conceived (NC) embryos as a control reference. The results show that as in vitro manipulation was increased (NC < FT < VT), both embryo survival rate (0.91 ± 0.02, 0.78 ± 0.05 and 0.63 ± 0.05, for NC, FT, and VT groups, respectively) and embryo size (3.21 ± 0.49 mm, 2.15 ± 0.51 mm, 1.76 ± 0.46 mm of diameter for NC, FT, and VT groups, respectively) were significantly decreased. Moreover, an unbiased metabolomics analysis showed overall down-accumulation in 40 metabolites among the three experimental groups, with embryo transfer and embryo cryopreservation procedures both exerting a cumulative effect. In this regard, targeted metabolomics findings revealed a significant reduction in some metabolites involved in metabolic pathways, such as the Krebs cycle, amino acids, unsaturated fatty acids, and arachidonic acid metabolisms. Altogether, these findings highlight a synergistic effect between the embryo transfer and vitrification procedures in preimplantation embryos. However, the ex vivo manipulation during embryo transfer seemed to be the major trigger of the embryonic changes, as the deviations added by the vitrification process were relatively smaller.
Project description:Introduction:Marathon, as a long-distance aerobic exercise, has become a fashionable or popular sport. However, little is known about the holistic metabolic changes occurring within the serum metabolome of athletes after the completion of a marathon. Objectives:The goal of current study was to have an in-depth understanding of the impact of marathon on human metabolomics as well as the relationships among a variety of metabolites. Methods:The 20 studied subjects were all adult males who participated in a marathon. The serum samples of these participants were collected before and after the marathon and the biochemical metabolites in the serum were identified by an untargeted two-dimensional gas chromatography time-of-flight mass spectrometry. Results:All participants completed the marathon within 3?h. Compared to those before exercise, serum urea and creatine kinase, as well as cortisol, elevated significantly (p?<?0.05), whereas testosterone decreased significantly (p?<?0.01). Metabolomic analysis showed that, compared to those before the competition, metabolites pyruvic acid, glyceric acid, malic acid, cis-aconitic acid, galacturonic acid, methyl fumaric acid, maltotriose, and others increased significantly after the competition (p?<?0.05), but glucosamine and O-succinyl-L-homoserine decreased significantly (p?<?0.05). Amino acid indexes, such as alanine, L-tyrosine and phenylalanine, increased significantly after exercise compared with those before exercise (p?<?0.05), whereas serine, valine and asparagine decreased significantly (p?<?0.05). Lipid metabolism indexes, glycerol, glyceric acid, octanoic acid, and quinic acid increased significantly (p?<?0.05). Theophylline, xanthine and other indicators of caffeine metabolism increased significantly (p?<?0.05). Furthermore, marathon performance, fat percentage, VO2max, and hemoglobin were correlated with the serum metabonomic indicators, so were serum testosterone and cortisol. Conclusion:These results illustrate that the metabolism of glucose and lipid of the athletes was enhanced following the marathon match. In addition, the metabolism of glucosamine was decreased and the metabolism of caffeine was increased. Our data provide new insights for marathon performance and nutritional status.
Project description:Mammalian skeletal muscles exhibit age-related adaptive and pathological remodeling. Several muscles in particular undergo progressive atrophy and degeneration beyond median lifespan. To better understand myocellular responses to aging, we used semi-quantitative global metabolomic profiling to characterize trends in metabolic changes between 15-month-old adult and 32-month-old aged Fischer 344 × Brown Norway (FBN) male rats. The FBN rat gastrocnemius muscle exhibits age-dependent atrophy, whereas the soleus muscle, up until 32 months, exhibits markedly fewer signs of atrophy. Both gastrocnemius and soleus muscles were analyzed, as well as plasma and urine. Compared to adult gastrocnemius, aged gastrocnemius showed evidence of reduced glycolytic metabolism, including accumulation of glycolytic, glycogenolytic, and pentose phosphate pathway intermediates. Pyruvate was elevated with age, yet levels of citrate and nicotinamide adenine dinucleotide were reduced, consistent with mitochondrial abnormalities. Indicative of muscle atrophy, 3-methylhistidine and free amino acids were elevated in aged gastrocnemius. The monounsaturated fatty acids oleate, cis-vaccenate, and palmitoleate also increased in aged gastrocnemius, suggesting altered lipid metabolism. Compared to gastrocnemius, aged soleus exhibited far fewer changes in carbohydrate metabolism, but did show reductions in several glycolytic intermediates, fumarate, malate, and flavin adenine dinucleotide. Plasma biochemicals showing the largest age-related increases included glycocholate, heme, 1,5-anhydroglucitol, 1-palmitoleoyl-glycerophosphocholine, palmitoleate, and creatine. These changes suggest reduced insulin sensitivity in aged FBN rats. Altogether, these data highlight skeletal muscle group-specific perturbations of glucose and lipid metabolism consistent with mitochondrial dysfunction in aged FBN rats.
Project description:The interplay between the Apicomplexan parasite Toxoplasma gondii and its host has been largely studied. However, molecular changes at the metabolic level in the host central nervous system and pathogenesis-associated metabolites during brain infection are largely unexplored. We used a global metabolomics strategy to identify differentially regulated metabolites and affected metabolic pathways in BALB/c mice during infection with T. gondii Pru strain at 7, 14 and 21 days post-infection (DPI). The non-targeted Liquid Chromatography-Mass Spectrometry (LC-MS) metabolomics analysis detected approximately 2,755 retention time-exact mass pairs, of which more than 60 had significantly differential profiles at different stages of infection. These include amino acids, organic acids, carbohydrates, fatty acids, and vitamins. The biological significance of these metabolites is discussed. Principal Component Analysis and Orthogonal Partial Least Square-Discriminant Analysis showed the metabolites' profile to change over time with the most significant changes occurring at 14 DPI. Correlated metabolic pathway imbalances were observed in carbohydrate metabolism, lipid metabolism, energetic metabolism and fatty acid oxidation. Eight metabolites correlated with the physical recovery from infection-caused illness were identified. These findings indicate that global metabolomics adopted in this study is a sensitive approach for detecting metabolic alterations in T. gondii-infected mice and generated a comparative metabolic profile of brain tissue distinguishing infected from non-infected host.
Project description:IntroductionImmunometabolism examines the links between immune cell function and metabolism. Dysregulation of immune cell metabolism is now an established feature of innate immune cell activation. Advances in liquid chromatography mass spectrometry (LC-MS) technologies have allowed discovery of unique insights into cellular metabolomics. Here we have studied and compared different sample preparation techniques and data normalisation methods described in the literature when applied to metabolomic profiling of human monocytes.MethodsPrimary monocytes stimulated with lipopolysaccharide (LPS) for four hours was used as a study model. Monocytes (n=24) were freshly isolated from whole blood and stimulated for four hours with lipopolysaccharide (LPS). A methanol-based extraction protocol was developed and metabolomic profiling carried out using a Hydrophilic Interaction Liquid Chromatography (HILIC) LC-MS method. Data analysis pipelines used both targeted and untargeted approaches, and over 40 different data normalisation techniques to account for technical and biological variation were examined. Cytokine levels in supernatants were measured by ELISA.ResultsThis method provided broad coverage of the monocyte metabolome. The most efficient and consistent normalisation method was measurement of residual protein in the metabolite fraction, which was further validated and optimised using a commercial kit. Alterations to the monocyte metabolome in response to LPS can be detected as early as four hours post stimulation. Broad and profound changes in monocyte metabolism were seen, in line with increased cytokine production. Elevated levels of amino acids and Krebs cycle metabolites were noted and decreases in aspartate and β-alanine are also reported for the first time. In the untargeted analysis, 154 metabolite entities were significantly altered compared to unstimulated cells. Pathway analysis revealed the most prominent changes occurred to (phospho-) inositol metabolism, glycolysis, and the pentose phosphate pathway.DiscussionThese data report the emergent changes to monocyte metabolism in response to LPS, in line with reports from later time points. A number of these metabolites are reported to alter inflammatory gene expression, which may facilitate the increases in cytokine production. Further validation is needed to confirm the link between metabolic activation and upregulation of inflammatory responses.
Project description:A detailed study of the diurnal compositional changes was performed in tomato (Solanum lycopersicum cv. Moneymaker) leaves and fruits. Plants were cultivated in a commercial greenhouse under two growth conditions: control and shaded. Expanding fruits and the closest mature leaves were harvested during two different day/night cycles (cloudy or sunny day). High-throughput robotized biochemical phenotyping of major compounds, as well as proton nuclear magnetic resonance and mass spectrometry metabolomic profiling, were used to measure the contents of about 70 metabolites in the leaves and 60 metabolites in the fruits, in parallel with ecophysiological measurements. Metabolite data were processed using multivariate, univariate, or clustering analyses and correlation networks. The shaded carbon-limited plants adjusted their leaf area, decreased their sink carbon demand and showed subtle compositional modifications. For source leaves, several metabolites varied along a diel cycle, including those directly linked to photosynthesis and photorespiration. These metabolites peaked at midday in both conditions and diel cycles as expected. However, transitory carbon storage was limited in tomato leaves. In fruits, fewer metabolites showed diel fluctuations, which were also of lower amplitude. Several organic acids were among the fluctuating metabolites. Diel patterns observed in leaves and especially in fruits differed between the cloudy and sunny days, and between the two conditions. Relationships between compositional changes in leaves and fruits are in agreement with the fact that several metabolic processes of the fruit appeared linked to its momentary supply of sucrose.
Project description:ScopeSeveral lines of evidence suggest that the consumption of cruciferous vegetables is beneficial to human health. Yet, underlying mechanisms and key molecular targets that are involved with achieving these benefits in humans are still not fully understood. To accelerate this research, we conduct a human study to identify potential molecular targets of crucifers for further study. This study aims to characterize plasma metabolite profiles in humans before and after consuming fresh broccoli sprouts (a rich dietary source of bioactive sulforaphane).Methods and resultsTen healthy adults consume fresh broccoli sprouts (containing 200 μmol sulforaphane equivalents) at time 0 and provide blood samples at 0, 3, 6, 12, 24, and 48 h. An untargeted metabolomics screen reveals that levels of several plasma metabolites are significantly different before and after sprout intake, including fatty acids (14:0, 14:1, 16:0, 16:1, 18:0, and 18:1), glutathione, glutamine, cysteine, dehydroepiandrosterone, and deoxyuridine monophosphate. Evaluation of all time points is conducted using paired t-test (R software) and repeated measures analysis of variance for a within-subject design (Progenesis QI).ConclusionThis investigation identifies several potential molecular targets of crucifers that may aid in studying established and emerging health benefits of consuming cruciferous vegetables and related bioactive compounds.
Project description:Choroidal neovascularization (CNV) is a severe complication observed in individuals with pathological myopia (PM). Our hypothesis is that specific metabolic alterations occur during the development of CNV in patients with PM. To investigate this, an untargeted metabolomics analysis was conducted using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) on aqueous humor (AH) samples obtained from meticulously matched PM patients, including those with CNV (n = 11) and without CNV (n = 11). The analysis aimed to identify differentially expressed metabolites between the two groups. Furthermore, the discriminative ability of each metabolite was evaluated using the area under the receiver operating characteristic curve (AUC). Enriched metabolic pathways were determined using the KEGG and MetaboAnalyst databases. Our results revealed the detection of 272 metabolites using GC-MS and 1457 metabolites using LC-MS in AH samples. Among them, 97 metabolites exhibited significant differential expression between the CNV and non-CNV groups. Noteworthy candidates, including D-citramalic acid, biphenyl, and isoleucylproline, demonstrated high AUC values ranging from 0.801 to 1, indicating their potential as disease biomarkers. Additionally, all three metabolites showed a strong association with retinal cystoid edema in CNV patients. Furthermore, the study identified 12 altered metabolic pathways, with five of them related to carbohydrate metabolism, suggesting their involvement in the occurrence of myopic CNV. These findings provide possible disease-specific biomarkers of CNV in PM and suggest the role of disturbed carbohydrate metabolism in its pathogenesis. Larger studies are needed to validate these findings.