Project description:Nutritional deprivation occurring in most preterm infants postnatally can induce hyperglycemia, a significant and independent risk factor for suppressing physiological retinal vascularization (Phase I retinopathy of prematurity (ROP)), leading to compensatory but pathological neovascularization. Amino acid supplementation reduces retinal neovascularization in mice. Little is known about amino acid contribution to Phase I ROP. In mice modeling hyperglycemia-associated Phase I ROP, we found significant changes in retinal amino acids (including most decreased L-leucine, L-isoleucine, and L-valine). Parenteral L-isoleucine suppressed physiological retinal vascularization. In premature infants, severe ROP was associated with a higher mean intake of parenteral versus enteral amino acids in the first two weeks of life after adjustment for treatment group, gestational age at birth, birth weight, and sex. The number of days with parenteral amino acids support independently predicted severe ROP. Further understanding and modulating amino acids may help improve nutritional intervention and prevent Phase I ROP.
Project description:Interventions: amino index cancer screening test and fecal immunochemical test
Primary outcome(s): Sensitivity of AICS for colorectal adenoma, intramucosal cancer and submucosal invasive cancer
Study Design: Single arm Non-randomized
Project description:Biogenesis of lysosome-related organelles complex-1 (BLOC-1) is a protein complex involved in the formation of endosomal tubular structures that mediates the sorting of protein cargoes to specialised compartments. In this study, we present insights into the metabolic consequences caused by BLOC-1 deficiency in pallid mice, which carry a null mutation in the Bloc1s6 gene encoding an essential component of this complex. The metabolome of the hippocampus of pallid mice was analysed using an untargeted, liquid chromatography-coupled mass spectrometric approach. After data pre-treatment, statistical analysis and pathway enrichment, we have identified 28 metabolites that showed statistically significant changes between pallid and wild-type control. These metabolites included amino acids, nucleobase-containing compounds and lysophospholipids. Interestingly, pallid mice displayed increased hippocampal levels of the neurotransmitters glutamate and N-acetyl-aspartyl-glutamic acid (NAAG) and their precursor glutamine. Expression of the sodium-coupled neutral amino acid transporter 1 (SNAT1), which transports glutamine into neurons, was also upregulated. Conversely, levels of the neurotransmitter precursors phenylalanine and tryptophan were decreased. Interestingly, many of these changes could be mapped to overlapping metabolic pathways. The observed metabolic alterations are likely to affect neurotransmission and neuronal homeostasis and in turn could mediate the memory and behavioural impairments observed in BLOC-1-deficient mice.
Project description:The pandemic of the coronavirus disease (COVID-19) caused by SARS-CoV-2 affects millions of people worldwide. There are still many unknown aspects to this infection which affects the whole world. In addition, the potential impacts caused by this infection are still unclear. Amino acid metabolism, in particular, contains significant clues in terms of the development and prevention of many diseases. Therefore, this study aimed to compare amino acid profile of COVID-19 and healthy subject. In this study, the amino acid profiles of patients with asymptomatic, mild, moderate, and severe/critical SARS-CoV-2 infection were scanned with LC-MS/MS. The amino acid profile encompassing 30 amino acids in 142 people including 30 control and 112 COVID-19 patients was examined. 20 amino acids showed significant differences when compared to the control group in COVID-19 patient groups with different levels of severity in the statistical analyses conducted. It was detected that the branched-chain amino acids (BCAAs) changed in correlation with one another, and L-2-aminobutyric acid and L-phenylalanine had biomarker potential for COVID-19. Moreover, it was concluded that L-2-aminobutyric acid could provide prognostic information about the course of the disease. We believe that a new viewpoint will develop regarding the diagnosis, treatment, and prognosis as a result of the evaluation of the serum amino acid profiles of COVID-19 patients. Determining L-phenylalanine and L-2-aminobutyric levels can be used in laboratories as a COVID-19-biomarker. Also, supplementing COVID patients with taurine and BCAAs can be beneficial for treatment protocols.
Project description:Aortic dissection (AD), a severe cardiovascular disease with the characteristics of high mortality, is lack of specific clinical biomarkers. In order to facilitate the diagnosis of AD, we investigated plasma amino acid profile through metabolomics approach. Total 33 human subjects were enrolled in the study: 11 coronary heart disease (CHD) patients without aortic lesion and 11 acute AD and 11 chronic AD. Amino acids were identified in plasma using liquid chromatography and mass spectrometry (LC-MS/MS), and were further subjected to multiple logistic regression analysis. The score plots of principal component analysis (PCA) and partial least squares-discriminate analysis (PLS-DA) showed clear discrimination of CHD patients with AD, acute AD or chronic AD patients, respectively. The contents of histidine, glycine, serine, citrate, ornithine, hydroxyproline, proline and sarcosine were significant different in acute AD patients comparing with CHD patients. The levels of citrate, GABA, glutamate and cysteine were significant different in chronic AD patients comparing with CHD patients. The contents of glutamate and phenylalanine were significant changed in acute AD patients comparing with chronic AD patients. Plasma aminograms were significantly altered in patients with AD comparing with CHD, especially in acute AD, suggesting amino acid profile is expected to exploit a novel, non-invasive, objective diagnosis for AD.
Project description:Amino acids play numerous roles in the central nervous system, serving as neurotransmitters, neuromodulators and regulators of energy metabolism. The free amino acid profile in serum of Parkinson's disease (PD) patients may be influenced by neurodegeneration, mitochondrial dysfunction, malabsorption in the gastroenteric tract and received treatment. The aim of our study was the evaluation of the profile of amino acid concentrations against disease progression. We assessed the amino acid profile in the serum of 73 patients divided into groups with early PD, late PD with dyskinesia and late PD without dyskinesia. Serum amino acid analysis was performed by high-pressure liquid chromatography with fluorescence detection. We observed some significant differences amongst the groups with respect to concentrations of alanine, arginine, phenylalanine and threonine, although no significant differences were observed between patients with advanced PD with and without dyskinesia. We conclude that this specific amino acid profile could serve as biochemical marker of PD progression.
Project description:BackgroundAmino acids (AAs) are one of the primary metabolic substrates for cardiac work. The correlation between AAs and both atrial fibrillation (AF) and aging has been documented. However, the relationship between AAs and age-related AF remains unclear.MethodsInitially, the plasma AA levels of persistent AF patients and control subjects were assessed, and the correlations between AA levels, age, and other clinical indicators were explored. Subsequently, the age-related AF mouse model was constructed and the untargeted myocardial metabolomics was conducted to detect the level of AAs and related metabolites. Additionally, the gut microbiota composition associated with age-related AF was detected by a 16S rDNA amplicon sequencing analysis on mouse fecal samples.ResultsHigher circulation levels of lysine (Student's t-test, P = 0.001), tyrosine (P = 0.002), glutamic acid (P = 0.008), methionine (P = 0.008), and isoleucine (P = 0.014), while a lower level of glycine (P = 0.003) were observed in persistent AF patients. The feature AAs identified by machine learning algorithms were glutamic acid and methionine. The association between AAs and age differs between AF and control subjects. Distinct patterns of AA metabolic profiles were observed in the myocardial metabolites of aged AF mice. Aged AF mice had lower levels of Betaine, L-histidine, L-alanine, L-arginine, L-Pyroglutamic acid, and L-Citrulline compared with adult AF mice. Aged AF mice also presented a different gut microbiota pattern, and its functional prediction analysis showed AA metabolism alteration.ConclusionThis study provided a comprehensive network of AA disturbances in age-related AF from multiple dimensions, including plasma, myocardium, and gut microbiota. Disturbances of AAs may serve as AF biomarkers, and restoring their homeostasis may have potential benefits for the management of age-related AF.
Project description:Aortic dissection (AD), a severe cardiovascular disease with the characteristics of high mortality, is lack of specific clinical biomarkers. In order to facilitate the diagnosis of AD, we investigated plasma amino acid profile through metabolomics approach. Total 33 human subjects were enrolled in the study: 11 coronary heart disease (CHD) patients without aortic lesion and 11 acute AD and 11 chronic AD. Amino acids were identified in plasma using liquid chromatography and mass spectrometry (LC-MS/MS), and were further subjected to multiple logistic regression analysis. The score plots of principal component analysis (PCA) and partial least squares-discriminate analysis (PLS-DA) showed clear discrimination of CHD patients with AD, acute AD or chronic AD patients, respectively. The contents of histidine, glycine, serine, citrate, ornithine, hydroxyproline, proline and sarcosine were significant different in acute AD patients comparing with CHD patients. The levels of citrate, GABA, glutamate and cysteine were significant different in chronic AD patients comparing with CHD patients. The contents of glutamate and phenylalanine were significant changed in acute AD patients comparing with chronic AD patients. Plasma aminograms were significantly altered in patients with AD comparing with CHD, especially in acute AD, suggesting amino acid profile is expected to exploit a novel, non-invasive, objective diagnosis for AD.
Project description:Samples-WT Basal condition primary cortex cells; WT B27 Starved-Primary cortex cells starved overnight without B27 supplement media. WT AA Starved-Primary cortex cell starved without amino acid for 2 hours. WT AA Refed-Primary cortex cell refed for 1 hour after amino acid starvation. KO Basal-SLC38 Knockout Primary cortex cells starved overnight without B27 supplement media. KO B27 Starved-SLC38 Knockout Primary cortex cell starved without amino acid for 2 hours. KO AA starved-SLC38 Knockout Primary cortex cell refed for 1 hour after amino acid starvation. KO AA Refed-SLC38 Knockout Primary cortex cell refed for 1 hour after amino acid starvation.
Project description:This study investigated whether dietary supplementation with magnolol affects growth performance, anti-inflammatory abilities, serum and muscle amino acid profiles, and metabolisms in growing pigs. A total of 42 seventy-days-old growing barrows (Duroc × Landrace × Yorkshire) were randomly allocated into two dietary groups: Con, control group (basal diet); and Mag, magnolol group (basal diet supplemented with 400 mg/kg of magnolol). The results revealed that dietary supplementation with magnolol had no effect (p > 0.05) on growth performance. However, magnolol supplementation remarkably increased (p < 0.05) the serum content of albumin, total protein, immunoglobulin G, immunoglobulin M, and interleukin-22. In addition, dietary magnolol supplementation altered the amino acid (AA) profiles in serum and dorsal muscle and particularly increased (p < 0.05) the serum content of arginine and muscle glutamate. Simultaneously, the mRNA expression of genes associated with AA transport in jejunum (SLC38A2, SLC1A5, and SLC7A1) and ileum (SLC1A5 and SLC7A1) was higher (p < 0.05) in the Mag group than in the Con group. Additionally, the serum metabolomics analysis showed that the addition of magnolol significantly enhanced (p < 0.05) arginine biosynthesis, as well as D-glutamine and D-glutamate metabolism. Overall, these results suggested that dietary supplementation with magnolol has the potential to improve the accumulation of AAs, protein synthesis, immunity, and body health in growing pigs by increasing intestinal absorption and the transport of AAs.