Project description:Leukemic splenocytes from these commercial transgenic mice that developed fatal leukemia with massive splenomegaly were isolated at the time of the necropsy and subjected to gene expression profiling and phosphoprotein profiling in side by side comparison with CD22DE12-Tg BPL or CD22DE12_BCR-ABL double transgenic cells.
Project description:Phospho-peptide enrichment Protein extraction, reduction, alkylation and digestion were conducted as described above. Then, 15 mg TiO2-coupled beads were incubated with 500 μl Binding Buffer (BB) at RT for 10 min. Each aliquoted TiO2 was added into three 1.5 ml EP tubes, 5 mg for each and centrifuge 2,000 g for 2 min. The peptides were re-solved with 6μl BB and combined with 5 mg incubated TiO2 at RT for 30 min and centrifuge 1,000 g for 2 min. Repeat the solved procedures for the dried phosphopeptides twice with the 5 mg TiO2 and then discard the supernatant (Tong et al., 2019a).
Project description:Postgenomic studies continue to highlight the potential clinical importance of protein phosphorylation signaling pathways in drug discovery. Unfortunately, the dynamic range and variable stoichiometry of protein phosphorylation continues to stymie efforts to achieve comprehensive characterization of the human phosphoproteome. In this study, we develop a complementary, two-stage method for enrichment of cysteine-containing phosphopeptides combined with TMT multiplex labeling for relative quantification. The use of this approach with multidimensional fractionation in mammalian cells yielded more than 7000 unique cys-phosphopeptide sequences, comprising 15-20% novel phosphorylation sites. The use of our approach in combination with pharmacologic inhibitors of the mechanistic target of rapamycin complex 1 and 2 identified several putatively novel protein substrates for the mechanistic target of rapamycin kinase.
Project description:Protein phosphorylation is a reversible post-translational modification essential for the regulation of several signal transduction pathways and biological processes in the living cell. Therefore, the identification of protein phosphorylation sites is crucial to understand cell signaling control at the molecular level. Based on mass spectrometry, recent studies have reported the large-scale mapping of phosphorylation sites in various eukaryotes and prokaryotes. However, little is known about the impact of phosphorylation in protozoan parasites. To in depth characterize the phosphoproteome of Trypanosoma cruzi, a parasite of the Kinetoplastida class, protein samples from cells at different phases of the metacyclogenesis--differentiation process of the parasites from non-infective epimastigotes to infective metacyclic trypomastigotes--were enriched for phosphopeptides using TiO(2) chromatography and analyzed on an LTQ-Orbitrap mass spectrometer. In total, 1,671 proteins were identified, including 753 phosphoproteins, containing a total of 2,572 phosphorylation sites. The distribution of phosphorylated residues was 2,162 (84.1%) on serine, 384 (14.9%) on threonine and 26 (1.0%) on tyrosine. Here, we also report several consensus phosphorylation sequence motifs and as some of these conserved groups have enriched biological functions, we can infer the regulation by protein kinases of this functions. To our knowledge, our phosphoproteome is the most comprehensive dataset identified until now for Kinetoplastida species. Here we also were able to extract biological information and infer groups of sites phosphorylated by the same protein kinase. To make our data accessible to the scientific community, we uploaded our study to the data repositories PHOSIDA, Proteome Commons and TriTrypDB enabling researchers to access information about the phosphorylation sites identified here.
Project description:Protein phosphorylation is a key regulatory event in most cellular processes and development. Mass spectrometry-based proteomics provides a framework for the large-scale identification and characterization of phosphorylation sites. Here, we used a well-established phosphopeptide enrichment and identification strategy including the combination of strong cation exchange chromatography, immobilized metal affinity chromatography, and high-accuracy mass spectrometry instrumentation to study phosphorylation in developing Drosophila embryos. In total, 13,720 different phosphorylation sites were discovered from 2702 proteins with an estimated false-discovery rate (FDR) of 0.63% at the peptide level. Because of the large size of the data set, both novel and known phosphorylation motifs were extracted using the Motif-X algorithm, including those representative of potential ordered phosphorylation events.
Project description:Candida albicans is an important human fungal pathogen in both immunocompetent and immunocompromised individuals. C. albicans regulation has been studied in many contexts, including morphological transitions, mating competence, biofilm formation, stress resistance, and cell wall synthesis. Analysis of kinase- and phosphatase-deficient mutants has made it clear that protein phosphorylation plays an important role in the regulation of these pathways. In this study, to further our understanding of phosphorylation in C. albicans regulation, we performed a deep analysis of the phosphoproteome in C. albicans. We identified 19,590 unique peptides that corresponded to 15,906 unique phosphosites on 2,896 proteins. The ratios of serine, threonine, and tyrosine phosphosites were 80.01%, 18.11%, and 1.81%, respectively. The majority of proteins (2,111) contained at least two detected phosphorylation sites. Consistent with findings in other fungi, cytoskeletal proteins were among the most highly phosphorylated proteins, and there were differences in Gene Ontology (GO) terms for proteins with serine and threonine versus tyrosine phosphorylation sites. This large-scale analysis identified phosphosites in protein components of Mediator, an important transcriptional coregulatory protein complex. A targeted analysis of the phosphosites in Mediator complex proteins confirmed the large-scale studies, and further in vitro assays identified a subset of these phosphorylations that were catalyzed by Cdk8 (Ssn3), a kinase within the Mediator complex. These data represent the deepest single analysis of a fungal phosphoproteome and lay the groundwork for future analyses of the C. albicans phosphoproteome and specific phosphoproteins.