Project description:Desmoplastic small round cell tumor (DSRCT) is an aggressive malignancy that occurs predominantly in young adult males and is characterized by abdominopelvic sarcomatosis exhibiting multi-lineage cellular nests of epithelial, muscular, mesenchymal, and neural differentiation admixed with desmoplastic stroma. Prior to the recognition of the disease as a distinct clinical entity, DSRCT was invariably misclassified as poorly differentiated atypical cancer of the testes, ovary, mesentery, or gastrointestinal tract, and the chemotherapies used for those malignancies elicited poor clinical response. As previously reported, a tectonic shift in the treatment of these patients occurred after researchers made two astute observations: 1) DSRCT microscopically resembles other small round “blue cell” sarcoma subtypes (e.g., ES, rhabdomyosarcoma, synovial sarcoma), and 2) DSRCT and ES have the same N-terminal EWSR1 fusion partner. Proteomic analysis using a reverse-phase protein lysate array (RPPA) was used to elucidate biomarkers that distinguish DSRCT from adjacent normal tissue and Ewing sarcoma. This proteomic analysis revealed novel proteins, such as the androgen receptor and Syk, that may be susceptible to drug targeting, as well as oncogenic pathways like Akt-PI3K that are highly expressed in DSRCT.
Project description:Among the physiological consequences of extended space flight are loss of skeletal muscle and bone mass. One signaling pathway that plays an important role in maintaining muscle and bone homeostasis is that regulated by the secreted signaling proteins, myostatin and activin A. Here, we used both pharmacological and genetic approaches to investigate the effect of targeting myostatin/activin A signaling in mice that were sent to the International Space Station. We show that inhibition of myostatin/activin A signaling has a significant protective effect against microgravity-induced muscle and bone loss. These findings have implications for therapeutic strategies to combat the concomitant muscle and bone loss occurring in people afflicted with disuse atrophy on Earth as well as in astronauts in space, especially during prolonged missions.
Project description:Background: Extra-articular manifestations of rheumatoid arthritis (RA), potentially due to systemic inflammation, include cardiovascular disease and sarcopenic obesity. Adiponectin, an adipose-derived cytokine, has been implicated in inflammatory processes in RA, but little is known regarding its association with inflammation in a pre-clinical period. Therefore, we investigated whether adiponectin was associated with inflammatory markers in individuals at risk for RA, and whether RA-related autoimmunity modifies these associations. Methods: We analyzed samples from 144 first-degree relatives (FDRs) of RA probands, of whom 23 were positive for anti-cyclic citrullinated peptide antibody and/or ≥ 2 rheumatoid factor isotypes (IgM, IgG or IgA). We called this phenotype the ‘high risk autoantibody profile (HRP)’ as it has been shown in prior work to be >96% specific for future RA. We measured adiponectin, cytokines/chemokines, and high-sensitivity C-reactive protein (hsCRP). Using linear mixed effects models, we evaluated interaction between HRP positivity and adiponectin on inflammatory markers, adjusting for age, sex, ethnicity, body mass index, pack-years smoking, and use of cholesterol-lowering medications. Results: In everyone, adiponectin concentration was inversely associated with hsCRP and IL-1b in adjusted models, where a 1% higher adiponectin was associated with a 26% lower hsCRP (p=0.04) and a 26% lower IL-1b (p=0.04). Significant interactions between HRP and adiponectin for associations with GM-CSF, IL-6, and IL-9 were detected in fully adjusted models (p=0.0006, p=0.006, p=0.01, respectively). In HRP positive FDRs but not HRP negative FDRs, a 1% higher adiponectin was associated with 97% higher GM-CSF, 73% higher IL-6, and 54% higher IL-9 concentrations. Conclusions: Adiponectin associates with inflammatory markers, and these associations differ in individuals with a high-risk autoantibody profile compared with those without. The interaction between adiponectin and autoimmunity may occur systemically, rather than at the joint, which may provide insight into the systemic effects of RA-related autoantibodies and inflammation in the absence of clinically apparent RA.
Project description:Human serum samples from Multiple Sclerosis (MS) subjects and healthy control subjects were probed onto human protein microarrays in order to identify differentially expressed autoantibody biomarkers that could be used as diagnostic indicators. Other neurodegenerative and non-neurodegenerative diseases were also used to help measure the specificity of the selected biomarkers.
Project description:Auto-antibody (Ab) profiles between acute-onset diffuse ILD (AoDILD) and stable states of 25 collagen disease patients were compared to screen biomarkers or pathogenic auto-Abs.
Project description:Ewing Sarcoma is caused by a pathognomonic genomic translocation that places an N-terminal EWSR1 gene in approximation with one of several ETS genes (typically FLI1). This aberration, in turn, alters the transcriptional regulation of more than five hundred genes and perturbs a number of critical pathways that promote oncogenesis, cell growth, invasion, and metastasis. Among them, translocation-mediated up-regulation of the insulin-like growth factor receptor 1 (IGF-1R) and mammalian target of rapamycin (mTOR) are of particular importance since they work in concert to facilitate IGF-1R expression and ligand-induced activation, respectively, of proven importance in ES transformation. When used as a single agent in Ewing sarcoma therapy, IGF-1R or mTOR inhibition leads to rapid counter-regulatory effects that blunt the intended therapeutic purpose. Therefore, identify new mechanisms of resistance that are used by Ewing sarcoma to evade cell death to single-agent IGF-1R inhibition might suggest a number of therapeutic combinations that could improve its clinical activity.
Project description:Purpose: Mutations in TP53 induce autoantibody immune responses in a subset of cancer patients, which have been proposed as biomarkers for early detection. Here, we investigate the association of p53 specific autoantibodies with multiple tumor subtypes and determine the association with p53 mutation status and epitope specificity. Experimental Design: IgG p53 autoantibodies (p53-AAb), were quantified in 412 serum saples using a programmable ELISA assay from patients with serous ovarian, pancreatic adenocarcinoma, and breast cancer. To determine if patients generated mutation specific autoantibodies we designed a panel of the most relevant 51 p53 point mutant proteins, to be displayed on custom programmable protein microarrays. To determine the epitope specificity we displayed 12 overlapping tiling fragments and 38 N- and C-terminal deletions spanning the length of the wild-type p53 proteins. Results: We detected p53-AAb with sensitivities of 58.8% (ovarian), 22% (pancreatic), 32% (triple negative breast cancer), and 10.2% (HER2+ breast cancer) at 94% specificity. Sera with p53-AAb contained broadly-reactive autoantibodies to 51 displayed p53 mutant proteins, demonstrating a polyclonal response to common epitopes. All p53-AAb displayed broad polyclonal immune response to both continuous and discontinuous epitopes at the N- and C-terminus as well as the DNA binding domain. Conclusion and clinical relevance: In this comprehensive analysis, mutations in tumor p53 induce strong, polyclonal autoantibodies with broadly reactive epitope specificity.
Project description:Small-molecule inhibitors of AKT signaling are being in evaluated in patients with various cancer types, but have so far proven therapeutically disappointing for reasons that remain unclear. Here, we treat cancer cells with sub-therapeutic doses of Akti-1/2, an allosteric small molecule AKT inhibitor, in order to experimentally model pharmacologic inhibition of AKT signaling in vitro. We then apply a combined RNA, protein, and metabolite profiling approach to develop an integrated, multi-scale, molecular snapshot of this “AKTlow” cancer cell state. We find that AKT-inhibited cancer cells suppress thousands of mRNA transcripts, and proteins related to the cell cycle, ribosome, and protein translation. Surprisingly, however, these AKT-inhibited cells simultaneously up-regulate a host of other proteins and metabolites post-transcriptionally, reflecting activation of their endo-vesiculo-membrane system, secretion of inflammatory proteins, and elaboration of extracellular microvesicles. Importantly, these microvesicles enable rapidly proliferating cancer cells of various types to better withstand different stress conditions, including serum deprivation, hypoxia, or cytotoxic chemotherapy in vitro and xenografting in vivo. These findings suggest a model whereby cancer cells experiencing a partial inhibition of AKT signaling may actually promote the survival of neighbors through non-cell autonomous communication.
Project description:In this study, we describe the development and use of an ad hoc protein microarray to characterize the gonococcal cross-binding of HumAbs isolated from 4CMenB vaccinated subjects and induced by the OMV component of the vaccine
Project description:A computer program was used to create random amino acid sequences based on and restricted by physical shadow masks which will be used for lithography-based synthesis of peptides. The output from this algorithm was used to create peptides that were synthesized by Sigma Aldrich, and printed onto glass slides. The arrays contained 384 peptides printed in duplicate for each of 4 different mask designs. 52 different monoclonal antibodies were incubated on these microarrays and analyzed for their propensity to bind the peptides created from each mask set. The diversity of binding served as a proxy for the 'randomness' of these peptides, and provided information about how many masks are needed to truly generate random sequence peptides.