Project description:Background: The soil environment is responsible for sustaining most terrestrial plant life on earth, yet we know surprisingly little about the important functions carried out by diverse microbial communities in soil. Soil microbes that inhabit the channels of decaying root systems, the detritusphere, are likely to be essential for plant growth and health, as these channels are the preferred locations of new root growth. Understanding the microbial metagenome of the detritusphere and how it responds to agricultural management such as crop rotations and soil tillage will be vital for improving global food production. Methods: The rhizosphere soils of wheat and chickpea growing under + and - decaying root were collected for metagenomics sequencing. A gene catalogue was established by de novo assembling metagenomic sequencing. Genes abundance was compared between bulk soil and rhizosphere soils under different treatments. Conclusions: The study describes the diversity and functional capacity of a high-quality soil microbial metagenome. The results demonstrate the contribution of the microbiome from decaying root in determining the metagenome of developing root systems, which is fundamental to plant growth, since roots preferentially inhabit previous root channels. Modifications in root microbial function through soil management, can ultimately govern plant health, productivity and food security.
Project description:Purpose: Deconstructing the soil microbiome into reduced-complexity functional modules represents a novel method of microbiome analysis. The goals of this study are to confirm differences in transcriptomic patterns among five functional module consortia. Methods: mRNA profiles of 3 replicates each of functional module enrichments of soil inoculum in M9 media with either 1) xylose, 2) n-acetylglucosamine, 3) glucose and gentamycin, 4) xylan, or 5) pectin were generated by sequencing using an Illumina platform (GENEWIZ performed sequencing). Sequence reads that passed quality filters were aligned to a soil metagenome using Burrows Wheeler Aligner. Resulting SAM files were converted to raw reads using HTSeq, and annotated using Uniref90 or EGGNOG databases. Results: To reduce the size of the RNA-Seq counts table and increase its computational tractability, transcripts containing a minimum of 75 total counts, but no more than 3 zero counts, across the 15 samples were removed. The subsequent dataset was normalized using DESeq2, resulting in a dataset consisting of 6947 unique transcripts across the 15 samples, and 185,920,068 reads. We identified gene categories that were enriched in a sample type relative to the overall dataset using Fisher’s exact test. Conclusions: our dataset confirms that the functional module consortia generated from targeted enrichments of a starting soil inoculum had distinct functional trends by enrichment type.
Project description:The experiment at three long-term agricultural experimental stations (namely the N, M and S sites) across northeast to southeast China was setup and operated by the Institute of Soil Science, Chinese Academy of Sciences. This experiment belongs to an integrated project (The Soil Reciprocal Transplant Experiment, SRTE) which serves as a platform for a number of studies evaluating climate and cropping effects on soil microbial diversity and its agro-ecosystem functioning. Soil transplant serves as a proxy to simulate climate change in realistic climate regimes. Here, we assessed the effects of soil type, soil transplant and landuse changes on soil microbial communities, which are key drivers in Earth’s biogeochemical cycles.
Project description:The goal of this growth chamber experiment was to investigate the effects of diverse soil microbial communities on the transcriptional responses of plants to drought. Specifically, we sought to understand how soil microbiomes' past exposure to water-limited conditions (either long-term exposure to dry conditions in low-precipitation sites, or recent acute drought) impacted their interactions with plants. Six soils collected from remnant prairies crossing a steep precipitation gradient in Kansas, USA were used as the starting microbial communities. Thirty-two pots (or mesocosms) of each soil were divided among four treatments: droughted or well-watered, and with or without a host plant (Tripsacum dactyloides) in a factorial design. The soil mesocosms were "conditioned" in these treatments for five months. (Metagenome and metatranscriptome data from the baseline soils and the post-conditioning soils are available in a separate BioProject on NCBI SRA and GEO). Then, a microbial slurry extracted from each of the 192 conditioned soils was used to inoculate 4 plants in a subsequent experiment (the “Test Phase”): one pot per combination of watering treatment (droughted or control) and host species (Zea mays or Tripsacum dactyloides). After 4 weeks (for maize) or 5 weeks (for eastern gamagrass) we harvested one crown root per plant for 16S rRNA sequencing and another crown root for RNA-seq. The 16S and RNA-seq data for these plants (both species) are contained in this BioProject. Note that 16S rRNA sequencing data are available for all plants in this experiment, but we conducted RNA-seq only for a subset (all plants grown in microbiomes originating from the 2 driest and 2 wettest collection sites).
Project description:The goal of this growth chamber experiment was to investigate the effects of diverse soil microbial communities on the transcriptional responses of plants to drought. Specifically, we sought to understand how soil microbiomes' past exposure to water-limited conditions (either long-term exposure to dry conditions in low-precipitation sites, or recent acute drought) impacted their interactions with plants. Six soils collected from remnant prairies crossing a steep precipitation gradient in Kansas, USA were used as the starting microbial communities. Thirty-two pots (or mesocosms) of each soil were divided among four treatments: droughted or well-watered, and with or without a host plant (Tripsacum dactyloides) in a factorial design. The soil mesocosms were "conditioned" in these treatments for five months. (Metagenome and metatranscriptome data from the baseline soils and the post-conditioning soils are available in a separate BioProject on NCBI SRA and GEO). Then, a microbial slurry extracted from each of the 192 conditioned soils was used to inoculate 4 plants in a subsequent experiment (the “Test Phase”): one pot per combination of watering treatment (droughted or control) and host species (Zea mays or Tripsacum dactyloides). After 4 weeks (for maize) or 5 weeks (for eastern gamagrass) we harvested one crown root per plant for 16S rRNA sequencing and another crown root for RNA-seq. The 16S and RNA-seq data for these plants (both species) are contained in this BioProject. Note that 16S rRNA sequencing data are available for all plants in this experiment, but we conducted RNA-seq only for a subset (all plants grown in microbiomes originating from the 2 driest and 2 wettest collection sites).
Project description:To study the soil mcirobial functional communities and the nutrient cycles couplings changes after exposure to different contaminant
Project description:The present invention relates to methods for determining soil quality, and especially soil pollution, using the invertebrate soil organism Folsomia candida also designated as springtail. Specifically, the present invention relates to a method for determining soil quality comprising: contacting Folsomia Candida with a soil sample to be analysed during a time period of 1 to 5 days; isolating said soil contacted Folsomia Candida; extracting RNA from said isolated soil contacted Folsomia Candida; determing a gene expression profile based on said extracted RNA using microarray technology; comparing said gene expression profile with a reference gene expression profile; and determing soil quality based expression level differences between said gene expression profile and said control expression profile.
Project description:Soil transplant serves as a proxy to simulate climate change in realistic climate regimes. Here, we assessed the effects of climate warming and cooling on soil microbial communities, which are key drivers in Earth’s biogeochemical cycles, four years after soil transplant over large transects from northern (N site) to central (NC site) and southern China (NS site) and vice versa. Four years after soil transplant, soil nitrogen components, microbial biomass, community phylogenetic and functional structures were altered. Microbial functional diversity, measured by a metagenomic tool named GeoChip, and phylogenetic diversity are increased with temperature, while microbial biomass were similar or decreased. Nevertheless, the effects of climate change was overridden by maize cropping, underscoring the need to disentangle them in research. Mantel tests and canonical correspondence analysis (CCA) demonstrated that vegetation, climatic factors (e.g., temperature and precipitation), soil nitrogen components and CO2 efflux were significantly correlated to the microbial community composition. Further investigation unveiled strong correlations between carbon cycling genes and CO2 efflux in bare soil but not cropped soil, and between nitrogen cycling genes and nitrification, which provides mechanistic understanding of these microbe-mediated processes and empowers an interesting possibility of incorporating bacterial gene abundance in greenhouse gas emission modeling.
Project description:The effects of two years' winter warming on the overall fungal functional gene structure in Alaskan tundra soil were studies by the GeoChip 4.2 Resuts showed that two years' winter warming changed the overall fungal functional gene structure in Alaskan tundra soil.