Project description:Alcanivorax sp. strain NBRC 101098 was isolated from seawater in Japan. Strain NBRC 101098 is able to degrade various types of n-alkanes. Here, we report the complete genome of strain NBRC 101098.
Project description:Species of the genus Halomonas are halophilic and their flexible adaption to changes of salinity and temperature brings considerable potential biotechnology applications, such as degradation of organic pollutants and enzyme production. The type strain Halomonas lutea YIM 91125(T) was isolated from a hypersaline lake in China. The genome of strain YIM 91125(T) becomes the twelfth species sequenced in Halomonas, and the thirteenth species sequenced in Halomonadaceae. We described the features of H. lutea YIM 91125(T), together with the high quality draft genome sequence and annotation of its type strain. The 4,533,090 bp long genome of strain YIM 91125(T) with its 4,284 protein-coding and 84 RNA genes is a part of Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes (KMG-I) project. From the viewpoint of comparative genomics, H. lutea has a larger genome size and more specific genes, which indicated acquisition of function bringing better adaption to its environment. DDH analysis demonstrated that H. lutea is a distinctive species, and halophilic features and nitrogen metabolism related genes were discovered in its genome.
Project description:Gluconobacter frateurii strain NBRC 103465 can efficiently produce glyceric acid (GA) from raw glycerol feedstock derived from biodiesel fuel production processes. Here, we report the 3.4-Mb draft genome sequence of G. frateurii NBRC 103465. The draft genome sequence can be applied to examine the enzymes and electron transport system involved in GA production.
Project description:Here, we report the draft genome sequence of the acetic acid bacterium Glucnobacter thailandicus strain NBRC 3255. The draft genome sequence is composed of 109 contigs in 3,305,227 bp and contains 3,225 protein-coding genes. Two paralogous sets of sldAB operons, which are responsible for dihydroxyacetone production from glycerol, were identified.
Project description:Gluconacetobacter xylinus is involved in the industrial production of cellulose. We have determined the genome sequence of G. xylinus NBRC 3288, a cellulose-nonproducing strain. Comparative analysis of genomes of G. xylinus NBRC 3288 with those of the cellulose-producing strains clarified the genes important for cellulose production in Gluconacetobacter.