Project description:Molecular networking and pattern-based genome mining improves discovery of biosynthetic gene clusters and their products from Salinispora
Project description:Genome Analysis of Streptomyces nojiriensis JCM 3382 and Distribution of Gene Clusters for Three Antibiotics and an Azasugar across the Genus Streptomyces
Project description:The parental P. acidipropionici and its genome-shuffled mutant were compared via metabolomics to find the key metabolic nodes influencing PA production.
Project description:We report a detailed characterization of the HPV16 genome in two brain metastases from OPSCC tumors. The use of a target enrichment strategy followed by next generation sequencing (NGS) provided an effective way to identify viral infection in tumor genome, including internal deletions and insertion sites into the host genome. Applying similar strategies to a larger cohort of HPV+ HNSCC brain metastases could help to identify biomarkers that can predict metastasis and/or identify novel therapeutic options.
Project description:We employed a proteogenomics workflow to identify microproteins encoded by small Open Reading Frames (ORFs) in the genome of Mycobacterium smegmatis strain mc²155.
Project description:ϕXacN1 is a novel jumbo myovirus infecting the causative agent of Asian citrus canker, Xanthomonas citri. Its linear 384,670 bp double-stranded DNA genome encodes 592 predicted protein coding genes and shows 65,875 bp direct terminal repeats (DTRs), so far the longest DTRs among sequence phage genomes. The DTRs harbor 56 tRNA genes, corresponding to all 20 amino acids. This is the highest number of tRNA genes reported in a phage genome. Codon usage analyses revealed a propensity that the phage encoded tRNAs target codons that are highly used by the phage but less frequently by its host. The existence of these tRNA genes, additional seven translation-related genes as well as a chaperonin gene found in the ϕXacN1 genome suggests an increased level of independence of phage replication on host molecular machinery and a wide host range. Consistently, ϕXacN1 showed a wider host range than other X. citri phages in an infection test against a panel of X. citri strains. Phylogenetic analyses revealed a clade of phages composed of ϕXacN1 and ten other jumbo phages showing an evolutionary stability in their large genome sizes.
Project description:Genome-wide mapping of gene-microbiome interaction: implication in behavior and effect on microbiome and metabolome. Data was generated on a Thermo Q Exactive and C18 RP UHPLC. Positive polarity acquisition on LC-MS/MS.
Project description:Genome-wide mapping of gene-microbiome interaction: implication in behavior and effect on microbiome and metabolome. Data was generated on a Thermo Q Exactive and C18 RP UHPLC. Positive polarity acquisition on LC-MS/MS.
Project description:In this study, we have applied the top-down approach to reduce the genome of B. subtilis in order to obtain minimal strains with robust growth on complex medium at 37°C. For this purpose, we have evaluated the function of each gene of the B. subtilis genome and identified essential, important and dispensable genomic regions. Using an efficient markerless and scarless deletion method and a system allowing induction of genetic competence in the complete cell population, we have constructed two genome-reduced strains lacking about 36% of dispensable genetic information. Multi-omics analyses with the genome-reduced strains revealed substantial changes in the transcriptome, the proteome and in the metabolome. The massive reorganization of metabolism in the two genome-reduced strains can be explained by the underlying genotypes that were determined by genome re-sequencing. Moreover, the transcriptome and proteome analyses uncovered novel dispensable genomic regions that can be removed to further streamline the B. subtilis genome. In conclusion, both minimal strains show interesting metabolic features and they serve as excellent starting points to generate an ultimate reduced-genome B. subtilis cell containing only genes required for robust growth on complex medium.
Project description:These experiments involve incubating various proteins of unknown function in the M. tuberculosis genome with whole-cell lysate and assaying changes in metabolite levels over time (e.g. 0, 15, 30min) to try to infer what reaction they might catalyze.