Project description:Streptococcus pneumoniae is a major pathogen causing bacterial infection in the middle ear of humans. We previously used S. pneumoniae strain ST556, a low-passage 19F isolate from an otitis media patient, to perform a whole-genome screen for ear infection-associated genes in a chinchilla model. This report presents the complete genome sequence of ST556. The genome sequence will provide information complementary to the experimental data from our genetic study of this strain.
Project description:Dihydrodipicolinate synthase (DHDPS; EC 4.2.1.52) catalyzes the rate-limiting step in the (S)-lysine biosynthesis pathway of bacteria and plants. Here, the cloning of the DHDPS gene from a clinical isolate of Streptococcus pneumoniae (OXC141 strain) and the strategy used to express, purify and crystallize the recombinant enzyme are described. Diffracting crystals were grown in high-molecular-weight PEG precipitants using the hanging-drop vapour-diffusion method. The best crystal, from which data were collected, diffracted to beyond 2.0 A resolution. Initially, the crystals were thought to belong to space group P4(2)2(1)2, with unit-cell parameters a = 105.5, b = 105.5, c = 62.4 A. However, the R factors remained high following initial processing of the data. It was subsequently shown that the data set was twinned and it was thus reprocessed in space group P2, resulting in a significant reduction in the R factors. Determination of the structure will provide insight into the design of novel antimicrobial agents targeting this important enzyme from S. pneumoniae.
Project description:The broad-spectrum fluoroquinolone ciprofloxacin is a bactericidal antibiotic targeting DNA topoisomerase IV and DNA gyrase encoded by the parC and gyrA genes. Resistance to ciprofloxacin in Streptococcus pneumoniae mainly occurs through the acquisition of mutations in the quinolone resistance-determining region (QRDR) of the ParC and GyrA targets. A role in low-level ciprofloxacin resistance has also been attributed to efflux systems. To look into ciprofloxacin resistance at a genome-wide scale and to discover additional mutations implicated in resistance, we performed whole-genome sequencing of an S. pneumoniae isolate selected for resistance to ciprofloxacin in vitro (128 μg/ml) and of a clinical isolate displaying low-level ciprofloxacin resistance (2 μg/ml). Gene disruption and DNA transformation experiments with PCR fragments harboring the mutations identified in the in vitro S. pneumoniae mutant revealed that resistance is mainly due to QRDR mutations in parC and gyrA and to the overexpression of the ABC transporters PatA and PatB. In contrast, no QRDR mutations were identified in the genome of the S. pneumoniae clinical isolate with low-level resistance to ciprofloxacin. Assays performed in the presence of the efflux pump inhibitor reserpine suggested that resistance is likely mediated by efflux. Interestingly, the genome sequence of this clinical isolate also revealed mutations in the coding region of patA and patB that we implicated in resistance. Finally, a mutation in the NAD(P)H-dependent glycerol-3-phosphate dehydrogenase identified in the S. pneumoniae clinical strain was shown to protect against ciprofloxacin-mediated reactive oxygen species.
Project description:A clinical isolate of Streptococcus pneumoniae was transformed with a plasmid containing the lux operon of Photorhabdus luminescens that had been modified to function in gram-positive bacteria. Cells containing this plasmid produced light stably and constitutively, without compromising the growth rate. Light output was correlated with measurements of optical density and viable counts during exponential growth and provided a sensitive, real-time measure of the pharmacodynamics of the fluoroquinolone gemifloxacin.
Project description:Serotype 6D of Streptococcus pneumoniae has been reported in Asia and the Fijian islands among nasopharyngeal carriage isolates. We now report a 6D isolate from a Finnish adult with invasive pneumococcal disease. Interestingly, the Finnish isolate and Asian isolate capsule gene loci are almost identical.
Project description:BACKGROUND: Streptococcus pneumoniae is an important human pathogen representing a major cause of morbidity and mortality worldwide. We sequenced the genome of a serotype 11A, ST62 S. pneumoniae invasive isolate (AP200), that was erythromycin-resistant due to the presence of the erm(TR) determinant, and carried out analysis of the genome organization and comparison with other pneumococcal genomes. RESULTS: The genome sequence of S. pneumoniae AP200 is 2,130,580 base pair in length. The genome carries 2216 coding sequences (CDS), 56 tRNA, and 12 rRNA genes. Of the CDSs, 72.9% have a predicted biological known function. AP200 contains the pilus islet 2 and, although its phenotype corresponds to serotype 11A, it contains an 11D capsular locus. Chromosomal rearrangements resulting from a large inversion across the replication axis, and horizontal gene transfer events were observed. The chromosomal inversion is likely implicated in the rebalance of the chromosomal architecture affected by the insertions of two large exogenous elements, the erm(TR)-carrying Tn1806 and a functional prophage designated ?Spn_200. Tn1806 is 52,457 bp in size and comprises 49 ORFs. Comparative analysis of Tn1806 revealed the presence of a similar genetic element or part of it in related species such as Streptococcus pyogenes and also in the anaerobic species Finegoldia magna, Anaerococcus prevotii and Clostridium difficile. The genome of ?Spn_200 is 35,989 bp in size and is organized in 47 ORFs grouped into five functional modules. Prophages similar to ?Spn_200 were found in pneumococci and in other streptococcal species, showing a high degree of exchange of functional modules. ?Spn_200 viral particles have morphologic characteristics typical of the Siphoviridae family and are capable of infecting a pneumococcal recipient strain. CONCLUSIONS: The sequence of S. pneumoniae AP200 chromosome revealed a dynamic genome, characterized by chromosomal rearrangements and horizontal gene transfers. The overall diversity of AP200 is driven mainly by the presence of the exogenous elements Tn1806 and ?Spn_200 that show large gene exchanges with other genetic elements of different bacterial species. These genetic elements likely provide AP200 with additional genes, such as those conferring antibiotic-resistance, promoting its adaptation to the environment.
Project description:Here, we report the draft genome sequence of Streptococcus pneumoniae EF3030, a pediatric otitis media isolate active in biofilm assays of epithelial colonization. The final draft assembly included 2,209,198 bp; the annotation predicted 2,120 coding DNA sequences (CDSs), 4 complete rRNA operons, 58 tRNAs, 3 noncoding RNAs (ncRNAs), and 199 pseudogenes.
Project description:Streptococcus pneumoniae (S. pneumoniae) is the most common bacterial cause of community-acquired pneumonia. Increasing rates of antibiotic-resistant S. pneumoniae strains impair therapy and necessitate alternative treatment options. In this study, we analysed insect-derived antimicrobial peptides (AMPs) for antibacterial effects on S. pneumoniae in a human in vitro infection model.AMP effects on bacterial growth were examined by colony forming unit (CFU)-assays, and growth curve measurements. Furthermore, cytotoxicity to primary human macrophages was detected by measuring lactate-dehydrogenase release to the supernatant. One AMP (Defensin 1) was tested in a model of primary human monocyte-derived macrophages infected with S. pneumoniae strain D39 and a multi-resistant clinical isolate. Inflammatory reactions were characterised by qPCR and multiplex-ELISA.In total, the antibacterial effects of 23 AMPs were characterized. Only Tribolium castaneum Defensin 1 showed significant antibacterial effects against S. pneumoniae strain D39 and a multi-resistant clinical isolate. During in vitro infection of primary human macrophages with S. pneumoniae D39, Defensin 1 displayed strong antibacterial effects, and consequently reduced bacteria-induced cytokine expression and release.In summary, Tribolium castaneum Defensin 1 showed profound antibacterial effectivity against Streptococcus pneumoniae D39 and a multi-resistant clinical isolate without unwanted cytotoxic or inflammatory side effects on human blood-derived macrophages.
Project description:Streptococcus pneumoniae is a primary cause of bacterial infection in humans. Here, we present the complete genome sequence of S. pneumoniae strain A026, which is a multidrug-resistant strain isolated from cerebrospinal fluid.
Project description:Rifampin resistance among South African clinical isolates of Streptococcus pneumoniae was shown to be due to missense mutations within the rpoB gene. Sequence analysis of 24 rifampin-resistant isolates revealed the presence of mutations within cluster I as well as novel mutations in an area designated pneumococcus cluster III. Of the 24 isolates characterized, only 1 resistant isolate did not contain any mutations in the regions sequenced. Either the cluster I or the cluster III mutations separately conferred MICs of 32 to 128 microg/ml. Clinical isolate 55, for which the MIC was 256 microg/ml, was noted to contain 9 of the 10 mutations identified, which included the cluster I and cluster III mutations. As in Escherichia coli, it is possible that cluster I (amino acids 406 to 434) and cluster III (amino acids 523 to 600) of S. pneumoniae interact to form part of the antibiotic binding site, thus accounting for the very high MIC observed for isolate 55. PCR products containing cluster I or cluster III mutations were able to transform rifampin-susceptible S. pneumoniae to resistance. Although many of the isolates studied displayed identical sequences, pulsed-field gel electrophoresis analysis revealed that the isolates were not of clonal origin.