Project description:we used high-throughput Illumina Genome Analyzer IIx (GAIIx) technology to sequence the small RNA transcriptomes of the mangrove species, Avicennia marina. Based on sequence similarity or the secondary structure of precursors, we have identified 193 conserved miRNAs and 26 novel miRNAs in the small RNA transcriptome of Avicennia marina.
Project description:In this study, we investigated the metabolic potential of N. marina based on its complete genome sequence and performed physiological experiments to test genome-derived hypotheses. Our data confirm that N. marina benefits from additions of undefined organic carbon substrates, has adaptations to resist oxidative, osmotic and UV light-induced stress and low dissolved pCO2. Additionally, N. marina is able to grow chemoorganotrophically on formate, and is thus not an obligate chemolithoautotroph. We further investigated the metabolic response of N. marina to low (5.6 µM) O2 concentrations. In response to O2-limited conditions, the abundance of a potentially more efficient CO2-fixing pyruvate:ferredoxin oxidoreductase (POR) complex and a high-affinity cbb3-type terminal oxidase increased, suggesting a role in sustaining nitrite oxidation-driven autotrophy under O2 limitation.
Project description:we used high-throughput Illumina Genome Analyzer IIx (GAIIx) technology to sequence the small RNA transcriptomes of the mangrove species, Avicennia marina. Based on sequence similarity or the secondary structure of precursors, we have identified 193 conserved miRNAs and 26 novel miRNAs in the small RNA transcriptome of Avicennia marina. 1 sample
Project description:Investigation of whole genome gene expression level changes in a Nitrosomonas europaea (ATCC 19718) wildtype and pFur::Kan mutant [kanamycin resistance cassette insertion in the promoter region of the fur gene (NE0616)] strains grown in Fe-replete and Fe-limited media. The Nitrosomonas europaea (ATCC 19718) wiltype cells grown in Fe-limited media were compared to cells grown in Fe-replete media to gain a better understanding of the metabolic changes occurring in response to iron stress. The Nitrosomonas europaea (ATCC 19718) pFur::Kan mutant strain grown in Fe-replete & Fe-limited media were compared to wildtype cells grown in Fe=replete & Fe-limited media to gain a better understanding of the role Fur (NE0616) plays in iron homeostasis control.
Project description:Investigation of whole genome gene expression level changes in a Nitrosomonas europaea (ATCC 19718) wildtype and pFur::Kan mutant [kanamycin resistance cassette insertion in the promoter region of the fur gene (NE0616)] strains grown in Fe-replete and Fe-limited media. The Nitrosomonas europaea (ATCC 19718) wiltype cells grown in Fe-limited media were compared to cells grown in Fe-replete media to gain a better understanding of the metabolic changes occurring in response to iron stress. The Nitrosomonas europaea (ATCC 19718) pFur::Kan mutant strain grown in Fe-replete & Fe-limited media were compared to wildtype cells grown in Fe=replete & Fe-limited media to gain a better understanding of the role Fur (NE0616) plays in iron homeostasis control. A 4-plex 3 chip study using total RNA recovered from three separate wild-type cultures each of N. europaea grown in Fe-replete media and Fe-limited media and three seperate cultures each of N. europaea pFur::Kan mutant strain grown in Fe-replete and Fe-limited media. Each chip measures the expression level of 2368 genes from Nitrosomonas europaea (ATCC19718) with 4 X 72,000 60-mer 14 probe pairs per gene, with two-fold technical redundancy.