Project description:The mitochondrial inner membrane plays central roles in bioenergetics and metabolism and contains well established membrane protein complexes. Here we report the identification of a megacomplex of the inner membrane, termed mitochondrial multifunctional assembly (MIMAS). Its large size of 3 MDa explains why MIMAS has escaped detection in the analysis of mitochondria so far. MIMAS combines proteins of diverse functions from respiratory assembly to metabolite transport, dehydrogenases and lipid biosynthesis, but not the large established supercomplexes of the respiratory chain, ATP synthase or prohibitin scaffold. MIMAS integrity depends on the non-bilayer phospholipid phosphatidylethanolamine in contrast to respiratory supercomplexes whose stability depends on cardiolipin. Our findings suggest that MIMAS forms a protein-lipid mega-assembly in the mitochondrial inner membrane that integrates respiratory biogenesis and metabolic processes in a multifunctional platform.
Project description:Hawk tea (Litsea coreana var. lanuginose) is a traditional Chinese tea, widely cultivated and consumed in southwestern China. It has been widely used to treat gastrosis, hepatitis, and inflammatory diseases for hundreds of years. Modern pharmacological studies demonstrate that hawk tea has protective effects against liver fibrosis, hypercholesterolemia, hyperglycemia, and inflammatory diseases . However, the molecular mechanism of hawk tea against hypercholesterolemia remains unclear. The aims of this study were to investigate the mechanisms of hawk tea extract (HTE) to lower cholesterol. Therefore, we performed genome-wide transcriptional analysis of hawk tea extracts treated HepG2 cells. Hawk tea extracts (HTE) induced significant gene modulation on HepG2 cells.
Project description:Hawk tea (Litsea coreana var. lanuginose) is a traditional Chinese tea, widely cultivated and consumed in southwestern China. It has been widely used to treat gastrosis, hepatitis, and inflammatory diseases for hundreds of years. Modern pharmacological studies demonstrate that hawk tea has protective effects against liver fibrosis, hypercholesterolemia, hyperglycemia, and inflammatory diseases . However, the molecular mechanism of hawk tea against hypercholesterolemia remains unclear. The aims of this study were to investigate the mechanisms of hawk tea extract (HTE) to lower cholesterol. Therefore, we performed genome-wide transcriptional analysis of hawk tea extracts treated HepG2 cells.