Project description:BACKGROUND AND AIMS: Although urban gardens provide opportunities for pollinators in an otherwise inhospitable environment, most garden plants are not native to the recipient biogeographical region and their value to local pollinators is disputed. This study tested the hypothesis that bumblebees foraging in English urban gardens preferentially visited sympatric Palaearctic-range plants over species originating outside their native range. METHODS: Twenty-seven surveys of flower availability and bumblebee visitation (Bombus spp.) were conducted over a 3-month summer period. Plants were categorized according to whether they were native British, Palaearctic or non-Palaearctic in origin. A phylogeny of the 119 plant species recorded was constructed and the relationship between floral abundance and the frequency of pollinator visits investigated by means of phylogenetically independent contrasts. Differentiation in utilization of plant species by the five bumblebee species encountered was investigated using niche overlap analyses. KEY RESULTS: There was conflicting evidence for preferential use of native-range Palaearctic plant species by bumblebees depending on which plants were included in the analysis. Evidence was also found for niche partitioning between species based on respective preferences for native and non-native biogeographical range plants. Two bumblebees (Bombus terrestris and B. pratorum) concentrated their foraging activity on non-Palaearctic plants, while two others (B. hortorum and B. pascourum) preferred Palaearctic species. CONCLUSIONS: The long-running debate about the value of native and non-native garden plants to pollinators probably stems from a failure to properly consider biogeographical overlap between plant and pollinator ranges. Gardeners can encourage pollinators without consideration of plant origin or bias towards 'local' biogeographical species. However, dietary specialist bumblebees seem to prefer plants sympatric with their own biogeographical range and, in addition to the cultivation of these species in gardens, provision of native non-horticultural ('weed') species may also be important for pollinator conservation.
Project description:Origins of the fauna in Iceland is controversial, although the majority of modern research supports the postglacial colonization of this island by terrestrial invertebrates rather than their long-term survival in glacial refugia. In this study, we use three bumblebee species as a model to test the hypothesis regarding possible cryptic refugia in Iceland and to evaluate a putative origin of recently introduced taxa. Bombus jonellus is thought to be a possible native Icelandic lineage, whereas B. lucorum and B. hortorum were evidently introduced in the second half of the 20th century. These phylogeographic analyses reveal that the Icelandic Bombus jonellus shares two COI lineages, one of which also occurs in populations on the British Isles and in mainland Europe, but a second lineage (BJ-02) has not been recorded anywhere. These results indicate that this species may have colonized Iceland two times and that the lineage BJ-02 may reflect a more ancient Late Pleistocene or Early Holocene founder event (e.g., from the British Isles). The Icelandic populations of both Bombus lucorum and B. hortorum share the COI lineages that were recorded as widespread throughout Eurasia, from the European countries across Russia to China and Japan. The findings presented here highlight that the bumblebee fauna of Iceland comprises mainly widespread ubiquitous lineages that arrived via natural or human-mediated dispersal events from the British Isles or the mainland.
Project description:Accurate estimates of movement behavior and distances travelled by animals are difficult to obtain, especially for small-bodied insects where transmitter weights have prevented the use of radio-tracking.Here, we report the first successful use of micro radio telemetry to track flight distances and space use of bumblebees. Using ground surveys and Cessna overflights in a Central European rural landscape mosaic we obtained maximum flight distances of 2.5 km, 1.9 km and 1.3 km for Bombus terrestris (workers), Bombus ruderatus (worker), and Bombus hortorum (young queens), respectively. Bumblebee individuals used large areas (0.25-43.53 ha) within one or a few days. Habitat analyses of one B. hortorum queen at the landscape scale indicated that gardens within villages were used more often than expected from habitat availability. Detailed movement trajectories of this individual revealed that prominent landscape structures (e.g. trees) and flower patches were repeatedly visited. However, we also observed long (i.e. >45 min) resting periods between flights (B. hortorum) and differences in flower-handling between bumblebees with and without transmitters (B. terrestris) suggesting that the current weight of transmitters (200 mg) may still impose significant energetic costs on the insects.Spatio-temporal movements of bumblebees can now be tracked with telemetry methods. Our measured flight distances exceed many previous estimates of bumblebee foraging ranges and suggest that travelling long distances to food resources may be common. However, even the smallest currently available transmitters still appear to compromise flower handling performance and cause an increase in resting behavior of bees. Future reductions of transmitter mass and size could open up new avenues for quantifying landscape-scale space use of insect pollinators and could provide novel insights into the behavior and requirements of bumblebees during critical life stages, e.g. when searching for mates, nest locations or hibernation sites.
Project description:Bumblebees (i.e. Bombus genus) are major pollinators of flowering wild plants and crops. Although many species are currently in decline, a number of them remain stable or are even expanding. One factor potentially driving changes in bumblebee distribution is the suitability of plant communities. Actually, bees probably have specific nutritional requirements that could shape their floral choices and constraint them in the current context of global change. However, most studies primarily focus on one bumblebee species at a time, making comparative studies scarce. Herein we performed comparative bioassays on three bumblebee species (i.e. Bombus hypnorum, B. pratorum and B. terrestris) fed on three different pollen diets with distinct nutritive content (Cistus, Erica and Salix pollen diets). Micro-colony performance was compared through different developmental and resource collection parameters for understanding the impact of change in pollen diet on different bumblebee species. The evidence suggests that B. terrestris is by far the most competitive species because of its performance compared to the other species, regardless of pollen diet. Our results also highlight a Bombus species effect as pollen diet impacts the micro-colonies in different ways according to the actual bumblebee species. Such interspecific variation in Bombus performance in response to a dietetic change underlines the importance of considering different bumblebee species in mitigation strategies. Such comparative studies are good advice for developing appropriate suites of plant species that can benefit threatened species while supporting stable or expanding ones.
Project description:Bumblebees (Hymenoptera: Apidae) are important pollinating insects that play pivotal roles in crop production and natural ecosystem services. To achieve a comprehensive profile of accessible chromatin regions and provide clues for all the possible regulatory elements in bumblebee genome, we did ATAC-seq for bumblebee samples that deriving from its four distinct developmental stages: egg, larva, pupa, and adult, respectively. The identified accessible chromatin regions of the study will provide important resources for uncovering promoters, enhancers and other regulatory elements of bumblebee genome, and such data will expand our understanding of bumblebee biology and facilitate the cloning of bumblebee genes that controlling important traits, which in turn will be useful in the upcoming molecular improvement of bumblebees. Overall design: ATAC-seq was performed on bombus terrestris workers in four developmental stages (egg, larva, pupa, adult). Chromatin open regions and nucleosomes were called for each time point samples.
Project description:To assess the ability of traditional biological recording schemes and lay citizen science approaches to gather data on species distributions and changes therein, we examined bumblebee records from the UK's national repository (National Biodiversity Network) and from BeeWatch. The two recording approaches revealed similar relative abundances of bumblebee species but different geographical distributions. For the widespread common carder (Bombus pascuorum), traditional recording scheme data were patchy, both spatially and temporally, reflecting active record centre rather than species distribution. Lay citizen science records displayed more extensive geographic coverage, reflecting human population density, thus offering better opportunities to account for recording effort. For the rapidly spreading tree bumblebee (Bombus hypnorum), both recording approaches revealed similar distributions due to a dedicated mapping project which overcame the patchy nature of naturalist records. We recommend, where possible, complementing skilled naturalist recording with lay citizen science programmes to obtain a nation-wide capability, and stress the need for timely uploading of data to the national repository.
Project description:Habitat fragmentation can have severe effects on plant pollinator interactions, for example changing the foraging behaviour of pollinators. To date, the impact of plant population size on pollen collection by pollinators has not yet been investigated. From 2008 to 2010, we monitored nine bumble bee species (Bombus campestris, Bombus hortorum s.l., Bombus hypnorum, Bombus lapidarius, Bombus pascuorum, Bombus pratorum, Bombus soroensis, Bombus terrestris s.l., Bombus vestalis s.l.) on Vaccinium uliginosum (Ericaceae) in up to nine populations in Belgium ranging in size from 80 m(2) to over 3.1 ha. Bumble bee abundance declined with decreasing plant population size, and especially the proportion of individuals of large bumble bee species diminished in smaller populations. The most remarkable and novel observation was that bumble bees seemed to switch foraging behaviour according to population size: while they collected both pollen and nectar in large populations, they largely neglected pollen collection in small populations. This pattern was due to large bumble bee species, which seem thus to be more likely to suffer from pollen shortages in smaller habitat fragments. Comparing pollen loads of bumble bees we found that fidelity to V. uliginosum pollen did not depend on plant population size but rather on the extent shrub cover and/or openness of the site. Bumble bees collected pollen only from three plant species (V.uliginosum, Sorbus aucuparia and Cytisus scoparius). We also did not discover any pollination limitation of V. uliginosum in small populations. We conclude that habitat fragmentation might not immediately threaten the pollination of V. uliginosum, nevertheless, it provides important nectar and pollen resources for bumble bees and declining populations of this plant could have negative effects for its pollinators. The finding that large bumble bee species abandon pollen collection when plant populations become small is of interest when considering plant and bumble bee conservation.