Project description:Pelobacter carbinolicus is phylogenetically intertwined with the Geobacteraceae, a family of deltaproteobacteria which couple oxidation of organic compounds to Fe(III) reduction. Whereas Geobacter species completely oxidize organic compounds to CO2, Pelobacter species either ferment or oxidize short chain alcohols to acetate. Pelobacter species also contain far fewer c-type cytochromes, proteins which play a role in electron transfer during Fe(III) respiration, compared to their Geobacter counterparts. Keywords: two-condition comparison
Project description:Transcriptional profiling of methanotrophic bacteria (pmoA gene) in methane oxidation biocover soil by depth Three-different depth condition in methane oxidation biocover soil: top, middle and botton layer soil: genomic DNA extract. Three replicate per array.
Project description:Low iron (Fe) bioavailability can limit the biosynthesis of Fe-containing proteins, which are especially abundant in photosynthetic organisms, thus negatively affecting global primary productivity. Understanding cellular coping mechanisms under Fe limitation is therefore of great interest. We surveyed the temporal responses of Chlamydomonas (Chlamydomonas reinhardtii) cells transitioning from an Fe-rich to an Fe-free medium to document their short- and long-term adjustments. While slower growth, chlorosis and lower photosynthetic parameters are evident only after one or more days in Fe-free medium, the abundance of some transcripts, such as those for genes encoding transporters and enzymes involved in Fe assimilation, change within minutes, before changes in intracellular Fe content are noticeable, suggestive of a sensitive mechanism for sensing Fe. Promoter reporter constructs indicate a transcriptional component to this immediate primary response. With acetate provided as a source of reduced carbon, transcripts encoding respiratory components are maintained relative to transcripts encoding components of photosynthesis and tetrapyrrole biosynthesis, indicating metabolic prioritization of respiration over photosynthesis. In contrast to the loss of chlorophyll, carotenoid content is maintained under Fe limitation despite a decrease in the transcripts for carotenoid biosynthesis genes, indicating carotenoid stability. These changes occur more slowly, only after the intracellular Fe quota responds, indicating a phased response in Chlamydomonas, involving both primary and secondary responses during acclimation to poor Fe nutrition.
Project description:Pelobacter carbinolicus is phylogenetically intertwined with the Geobacteraceae, a family of deltaproteobacteria which couple oxidation of organic compounds to Fe(III) reduction. Whereas Geobacter species completely oxidize organic compounds to CO2, Pelobacter species either ferment or oxidize short chain alcohols to acetate. Pelobacter species also contain far fewer c-type cytochromes, proteins which play a role in electron transfer during Fe(III) respiration, compared to their Geobacter counterparts. Keywords: two-condition comparison Three biological replicates were hybridized in duplicate. Experimental (FeIII) was labeled with cy5, control (acetoin) was labeled with cy3.
Project description:Methanotrophs, which help regulate atmospheric levels of methane, are active in diverse natural and man-made environments. This range of habitats and the feast-famine cycles seen by many environmental methanotrophs suggest that methanotrophs dynamically mediate rates of methane oxidation. Global methane budgets require ways to account for this variability in time and space. Functional gene biomarker transcripts are increasingly being studied to inform the dynamics of diverse biogeochemical cycles. Previously, per-cell transcript levels of the methane oxidation biomarker, pmoA, were found to vary quantitatively with respect to methane oxidation rates in model aerobic methanotroph, Methylosinus trichosporium OB3b. In the present study, these trends were explored for two additional aerobic methanotroph pure cultures, Methylocystis parvus OBBP and Methylomicrobium album BG8. At steady-state conditions, per cell pmoA mRNA transcript levels strongly correlated with per cell methane oxidation across the three methanotrophs across many orders of magnitude of activity (R2 = 0.91). Additionally, genome-wide expression data (RNA-seq) were used to explore transcriptomic responses of steady state M. album BG8 cultures to short-term CH4 and O2 limitation. These limitations induced regulation of genes involved in central carbon metabolism (including carbon storage), cell motility, and stress response.
Project description:Haloalkaliphilic microorganisms are double extremophiles functioning optimally at high salinity and pH. Their typical habitats are soda lakes, representing geologically ancient ecosystems which are still widespread on Earth and supposedly harbor relict microbial communities. We compared metabolic features and their genomic determinants in two strains of a single natronophilic species Dethiobacter alkaliphilus, the only cultured representative of “Dethiobacteria” class within Bacillota phylum. The strains of D. alkaliphilus were previously isolated from geographically remote Mongolian and Kenyan soda lakes. The type strain AHT1T was described as a facultatively chemolithoautotrophic sulfidogen reducing or disproportionating sulfur or thiosulfate, while strain Z-1002 was isolated as a chemolithoautotrophic iron reducer. Here, we uncovered iron reducing ability of strain AHT1T, as well as the capability of strain Z-1002 for thiosulfate reduction and anaerobic Fe(II) oxidation. Key catabolic processes sustaining the growth of both strains appeared to fit the geochemical settings of two contrasting natural alkaline environments, sulfur-enriched soda lakes and iron-enriched serpentinites. This assumption was supported by meta-analysis of publicly available Dethiobacterial metagenomes, as well as by the enrichment of a novel phylotype from a deep subsurface non-serpentinizing slightly alkaline water after its amendment with an Fe(III) mineral. Genome analysis of D. alkaliphilus strains revealed that the most probable determinants of iron and sulfur redox transformations in the organism are multiheme c-type cytochromes. Their phylogeny reconstruction showed that sulfur and thiosulfate respiration is most probably provided by evolutionary early forms of unconventional octaheme tetrathionate and sulfite reductases sharing a root with structurally similar group of OmhA/OcwA Fe(III)-reductases. Large sets of other multihemes are likely to provide Fe(III) reduction in both strains. Also, several different, yet phylogenetically related, determinants of anaerobic Fe(II) oxidation were identified in Z-1002 genome, and the oxidation process was further experimentally proven. Considering these results and phylogenetic relatedness of D. alkaliphilus’s sulfur reductases with Fe(III) reducing cytochromes, but not with archetypal bacterial sulfur/thiosulfate reductases, we suggest that sustaining high variation of multiheme cytochromes is an effective adaptive strategy to occupy geochemically contrasting alkaline anaerobic environments. We further propose that sulfur-enriched soda lakes are secondary habitats for D. alkaliphilus comparing to Fe-rich serpentinites, and discuss the evolutionary traits which might occur in prokaryotes on a crucial junction of the biosphere’s history, when intensification of the sulfur cycle outweighed the global significance of the iron cycle.
Project description:Anaerobic benzene oxidation coupled to the reduction of Fe(III) was studied in Ferroglobus placidus in order to learn more about how such a stable molecule could be metabolized under strict anaerobic conditions. F. placidus conserved energy to support growth at 85°C in a medium with benzene provided as the sole electron donor and Fe(III) as the sole electron acceptor. The stoichiometry of benzene loss and Fe(III) reduction, as well as the conversion of [14C]-benzene to [14C]-carbon dioxide, was consistent with complete oxidation of benzene to carbon dioxide with electron transfer to Fe(III). Benzoate, but not phenol or toluene, accumulated at low levels during benzene metabolism and [14C]-benzoate was produced from [14C]-benzene. Analysis of gene transcript levels revealed increased expression of genes encoding enzymes for anaerobic benzoate degradation during growth on benzene versus growth on acetate, but genes involved in phenol degradation were not up-regulated during growth on benzene. A gene for a putative carboxylase that was more highly expressed in benzene- versus benzoate-grown cells was identified. These results suggest that benzene is carboxylated to benzoate and that phenol is not an important intermediate in the benzene metabolism of F. placidus. This is the first demonstration of a microorganism in pure culture that can grow on benzene under strict anaerobic conditions and for which there is strong evidence for degradation of benzene via clearly defined anaerobic metabolic pathways. Thus, F. placidus provides a much needed pure culture model for further studies on the anaerobic activation of benzene in microorganisms.
Project description:Anaerobic benzene oxidation coupled to the reduction of Fe(III) was studied in Ferroglobus placidus in order to learn more about how such a stable molecule could be metabolized under strict anaerobic conditions. F. placidus conserved energy to support growth at 85°C in a medium with benzene provided as the sole electron donor and Fe(III) as the sole electron acceptor. The stoichiometry of benzene loss and Fe(III) reduction, as well as the conversion of [14C]-benzene to [14C]-carbon dioxide, was consistent with complete oxidation of benzene to carbon dioxide with electron transfer to Fe(III). Benzoate, but not phenol or toluene, accumulated at low levels during benzene metabolism and [14C]-benzoate was produced from [14C]-benzene. Analysis of gene transcript levels revealed increased expression of genes encoding enzymes for anaerobic benzoate degradation during growth on benzene versus growth on acetate, but genes involved in phenol degradation were not up-regulated during growth on benzene. A gene for a putative carboxylase that was more highly expressed in benzene- versus benzoate-grown cells was identified. These results suggest that benzene is carboxylated to benzoate and that phenol is not an important intermediate in the benzene metabolism of F. placidus. This is the first demonstration of a microorganism in pure culture that can grow on benzene under strict anaerobic conditions and for which there is strong evidence for degradation of benzene via clearly defined anaerobic metabolic pathways. Thus, F. placidus provides a much needed pure culture model for further studies on the anaerobic activation of benzene in microorganisms.
Project description:Anaerobic benzene oxidation coupled to the reduction of Fe(III) was studied in Ferroglobus placidus in order to learn more about how such a stable molecule could be metabolized under strict anaerobic conditions. F. placidus conserved energy to support growth at 85°C in a medium with benzene provided as the sole electron donor and Fe(III) as the sole electron acceptor. The stoichiometry of benzene loss and Fe(III) reduction, as well as the conversion of [14C]-benzene to [14C]-carbon dioxide, was consistent with complete oxidation of benzene to carbon dioxide with electron transfer to Fe(III). Benzoate, but not phenol or toluene, accumulated at low levels during benzene metabolism and [14C]-benzoate was produced from [14C]-benzene. Analysis of gene transcript levels revealed increased expression of genes encoding enzymes for anaerobic benzoate degradation during growth on benzene versus growth on acetate, but genes involved in phenol degradation were not up-regulated during growth on benzene. A gene for a putative carboxylase that was more highly expressed in benzene- versus benzoate-grown cells was identified. These results suggest that benzene is carboxylated to benzoate and that phenol is not an important intermediate in the benzene metabolism of F. placidus. This is the first demonstration of a microorganism in pure culture that can grow on benzene under strict anaerobic conditions and for which there is strong evidence for degradation of benzene via clearly defined anaerobic metabolic pathways. Thus, F. placidus provides a much needed pure culture model for further studies on the anaerobic activation of benzene in microorganisms.