Project description:Even though feather pecking (FP) in laying hens has been extensively studied, a good solution to prevent chickens from this behavior under commercial circumstances has not been found. Selection against FP behavior is possible, but for a more effective selection across different populations, it is necessary to characterize the genetic mechanism associated with this behavior. In this study, we use a high FP selection line, which has been selected for 8 generations. We present evidence of the presence of a major dominant allele affecting the FP behavior by using an argument based on the presence of mixture in the distribution of the observed FP and by studying the evolution of the proportion of very high FP along the sequence of 8 generations. This hypothesis is further supported by the fact that the gene transcription profile of the birds performing high FP differs from the profile of the other birds performing FP (456 genes differentially expressed from a total of 14,077 investigated genes). Keywords: severe feather pecking , selection , modeling , inheritance pattern From each selection line (high feather pecking line, low feather pecking line and control line) 60 animals were randomly selected. Within each line the birds were randomly assigned to a cage of 20. The cages were kept in a randomized block design. Number of samples analyzed in total: 179 (60 high feather pecking line, 60 low feather pecking line, 59 control line samples. Common reference design using total-RNA purified from brain from a single F1 cross between the high and low feather pecking line as reference.
Project description:Even though feather pecking (FP) in laying hens has been extensively studied, a good solution to prevent chickens from this behavior under commercial circumstances has not been found. Selection against FP behavior is possible, but for a more effective selection across different populations, it is necessary to characterize the genetic mechanism associated with this behavior. In this study, we use a high FP selection line, which has been selected for 8 generations. We present evidence of the presence of a major dominant allele affecting the FP behavior by using an argument based on the presence of mixture in the distribution of the observed FP and by studying the evolution of the proportion of very high FP along the sequence of 8 generations. This hypothesis is further supported by the fact that the gene transcription profile of the birds performing high FP differs from the profile of the other birds performing FP (456 genes differentially expressed from a total of 14,077 investigated genes). Keywords: severe feather pecking , selection , modeling , inheritance pattern Overall design: From each selection line (high feather pecking line, low feather pecking line and control line) 60 animals were randomly selected. Within each line the birds were randomly assigned to a cage of 20. The cages were kept in a randomized block design. Number of samples analyzed in total: 179 (60 high feather pecking line, 60 low feather pecking line, 59 control line samples. Common reference design using total-RNA purified from brain from a single F1 cross between the high and low feather pecking line as reference.
Project description:Feather pecking and aggressive pecking in laying hens are serious economic and welfare issues. In spite of extensive research on feather pecking during the last decades, the motivation for this behavior is still not clear. A small to moderate heritability has frequently been reported for these traits. Recently, we identified several single-nucleotide polymorphisms (SNPs) associated with feather pecking by mapping selection signatures in two divergent feather pecking lines. Here, we performed a genome-wide association analysis (GWAS) for feather pecking and aggressive pecking behavior, then combined the results with those from the recent selection signature experiment, and linked them to those obtained from a differential gene expression study.A large F2 cross of 960 F2 hens was generated using the divergent lines as founders. Hens were phenotyped for feather pecks delivered (FPD), aggressive pecks delivered (APD), and aggressive pecks received (APR). Individuals were genotyped with the Illumina 60K chicken Infinium iSelect chip. After data filtering, 29,376 SNPs remained for analyses. Single-marker GWAS was performed using a Poisson model. The results were combined with those from the selection signature experiment using Fisher's combined probability test.Numerous significant SNPs were identified for all traits but with low false discovery rates. Nearly all significant SNPs were located in clusters that spanned a maximum of 3 Mb and included at least two significant SNPs. For FPD, four clusters were identified, which increased to 13 based on the meta-analysis (FPDmeta). Seven clusters were identified for APD and three for APR. Eight genes (of the 750 investigated genes located in the FPDmeta clusters) were significantly differentially-expressed in the brain of hens from both lines. One gene, SLC12A9, and the positional candidate gene for APD, GNG2, may be linked to the monomanine signaling pathway, which is involved in feather pecking and aggressive behavior.Combining the results from the GWAS with those of the selection signature experiment substantially increased the statistical power. The behavioral traits were controlled by many genes with small effects and no single SNP had effects large enough to justify its use in marker-assisted selection.
Project description:Feather pecking is a major welfare problem in egg production. It may be caused by genetic, physiological and environmental factors. The main aim of this study was to uncover variability in gene expression between individuals from high (HFP) and for low feather pecking (LFP) line using Chicken Gene Expression Microarrays (Agilent Technologies). Samples were assorted to two groups, each containing 9 biological replicates from high feather pecking (HFP) and low feather pecking (LFP) line.
Project description:Feather pecking is a major welfare problem in egg production. It may be caused by genetic, physiological and environmental factors. The main aim of this study was to uncover variability in gene expression between individuals from high (HFP) and for low feather pecking (LFP) line using Chicken Gene Expression Microarrays (Agilent Technologies). Samples were assorted to two groups, each containing 9 biological replicates from high feather pecking (HFP) and low feather pecking (LFP) line.
Project description:BACKGROUND: An association study between single nucleotide polymorphism markers (SNP) and (innate and adaptive) immune parameters but also feather condition score on the back, rump and belly of laying hens was performed. The immune parameters measured in blood samples were natural and acquired antibody titers and complement activity. Feather condition score as a measure of feather damage was determined, this parameter is closely related to feather pecking behavior in hens housed in groups.The aim of the study was to detect associations between genetic markers and immune parameters and feather condition score across nine lines of laying hens, focusing on the feather peckers as well as on the victims of feather pecking. METHODS: A novel approach based on across-line analysis and testing of the SNP-by-line interaction was performed. RESULTS: In total 59 significant associations between SNP and immune traits were detected. Previously identified QTL were confirmed and new associations of genes regulating immune function identified. The IL17A gene (chromosome 3) influences natural and acquired antibody titers and activation of classical and alternative complement pathways. The major histocompatibility complex on chromosome 16 showed significant association with natural and acquired antibody titers and classical complement activity. The IL12B and IRF1 genes on chromosome 13 were associated with natural antibody titers.The direct effect of the genotype of an individual on its feather condition and the associative effect of the genotype of the cage mates on the individual's feather condition were analyzed. The direct genetic effect can be described as the susceptibility to be pecked at, and the associative genetic effect as the propensity to perform feather pecking. Eleven significant associations were detected for the direct effect, and 81 for the associative effect. The serotonin receptor 2C (HTR2C) on chromosome 4 was highlighted in both analyses. CONCLUSIONS: Our results confirmed previously identified QTL and identified new associations of genes regulating immune function. The results for feather condition score supports existing evidence of involvement of the serotonergic system in feather pecking in laying hens. Immune regulatory genes were found to be associated to feather condition score, revealing relationships between the immune system and behavior.
Project description:Through social interactions, individuals can affect one another's phenotype. The heritable effect of an individual on the phenotype of a conspecific is known as an indirect genetic effect (IGE). Although IGEs can have a substantial impact on heritable variation and response to selection, little is known about the genetic architecture of traits affected by IGEs. We studied IGEs for survival in domestic chickens (Gallus gallus), using data on two purebred lines and their reciprocal cross. Birds were kept in groups of four. Feather pecking and cannibalism caused mortality, as beaks were kept intact. Survival time was shorter in crossbreds than in purebreds, indicating outbreeding depression and the presence of nonadditive genetic effects. IGEs contributed the majority of heritable variation in crossbreds (87 and 72%) and around half of heritable variation in purebreds (65 and 44%). There was no evidence of dominance variance, neither direct nor indirect. Absence of dominance variance in combination with considerable outbreeding depression suggests that survival is affected by many loci. Direct-indirect genetic correlations were moderately to highly negative in crossbreds (-0.37 ± 0.17 and -0.83 ± 0.10), but low and not significantly different from zero in purebreds (0.20 ± 0.21 and -0.28 ± 0.18). Consequently, unlike purebreds, crossbreds would fail to respond positively to mass selection. The direct genetic correlation between both crosses was high (0.95 ± 0.23), whereas the indirect genetic correlation was moderate (0.41 ± 0.26). Thus, for IGEs, it mattered which parental line provided the sire and which provided the dam. This indirect parent-of-origin effect appeared to be paternally transmitted and is probably Z chromosome linked.
Project description:Feather pecking is a behavior that occurs in order to cope with a constrained environment and is a serious problem in the egg production industry. This longitudinal study was conducted under commercial conditions to investigate whether the application of two repellent mixtures, previously suggested as aversive to wild birds, to the plumage of Prelux-R hybrid egg layers is a viable alternative to beak trimming as a solution to discourage feather pecking among laying hens. A total of 180 untrimmed hybrid layers was reared together in a floor pen. At 18 weeks of age they were allocated randomly to three treatments (repellent P, repellent T, control), each consisting of 6 replicated enriched cages with 10 hens in each cage. Hens were evenly sprayed once every 2 weeks for 54 weeks with solution P (dimethyl anthranilate and methyl phenylacetate), solution T (dimethyl anthranilate and geraniol), or distilled water (control). Body weight, plumage condition, behavior, feed intake, and egg quality measurements were taken at five time periods from 26 to 76 weeks of age. Egg production and mortality were recorded daily. The treatments did not affect feather pecking behavior. Hens treated with repellent T tended to perform less cage pecking than the control hens. The use of the repellents did not reduce feather pecking, the plumage was even more significantly damaged in the hens given the repellents compared to the control hens. This suggests the chemicals in the repellents worsened the plumage. No differences in feed intake and daily egg production between treatments were found. Raw and hard-boiled eggs were highly uniform in odor/flavor/taste and no offensive odor absorption related to the chemicals in the repellents was detected. In conclusion, in the present study we did not find any beneficial effect of dimethyl anthranilate-based repellents on feather pecking frequency and plumage/feather condition. Therefore, we do not encourage their use in wider commercial settings.
Project description:Feather pecking is a prominent issue in the commercial egg industry, associated with economic losses and welfare problems. A non-systematic literature search suggests that studies on feather pecking are predominantly concerned with applied research goals. That is to say, they aim to solve or diminish the effects of this problematic behavior by orienting towards practical approaches. The strong emphasis on this research approach has skewed our knowledge of the causes of feather pecking in relation to welfare. While the need for such research is high, there is an equivalent need for basic research that has not received corresponding effort. Also, current research predominantly focuses on the negative effects on the birds being pecked, whereas too little attention is given to the possible welfare problems of the peckers. We argue that more basic research is needed for obtaining comprehensive science-based knowledge of behavioral needs and abilities of hens, in particular with respect to behavioral problems that threaten their welfare.
Project description:Feather pecking (FP) is a longstanding serious problem in commercial flocks of laying hens. It is a highly polygenic trait and the genetic background is still not completely understood. In order to find genomic regions influencing FP, selection signatures between laying hen lines divergently selected for high and low feather pecking were mapped using the intra-population iHS and the inter-population FST approach. In addition, the existence of an extreme subgroup of FP hens (EFP) across both selected lines has been demonstrated by fitting a mixture of negative binomial distributions to the data and calculating the posterior probability of belonging to the extreme subgroup (pEFP) for each hen. A genomewide association study (GWAS) was performed for the traits pEFP and FP delivered (FPD) with a subsequent post GWAS analysis. Mapping of selection signatures revealed no clear regions under selection. GWAS revealed a region on Chromosome 1, where the existence of a QTL influencing FP is likely. The candidate genes found in this region are a part of the GABAergic system, which has already been linked to FP in previous studies. Despite the polygenic nature of FP, selection on these candidate genes may reduce FP.