Project description:Goals and objectives of this study: to identify genes of the Treg signature induced by consitutive expression of GARP or FOXP3 in antigen-specific Th cells with potential role for stabililization & maintenance of the regulatory program. Keywords: T-cell receptor stimulation, gene-regulation, comparative gene expression profiling, cell type comparison, human, regulatory T cells, FOXP3, GARP Human alloantigen-specific Treg cells (THU) and Th cells (CD4-39), established and described recently (Ocklenburg et al.. Lab Invest.2006; 86: 724-737), were sitmulated for 3 days with cognate antigen (EBV B cells) and IL2 as described (Ocklenburg et al.. Lab Invest.2006; 86: 724-737) and analyzed using human Affymetrix U133 2.0 in monoplicate. Th cells had been transduced with a retroviral vector containing human GARP (LRRC32) or FOXP3 and an IRES-driven GFP as marker or empty GFP control, sorted for GFP+, expanded as described recently (Ocklenburg et al.. Lab Invest.2006; 86: 724-737), and characterized functially, phenotypically, and genetically as described (WO/2007/113301). Abbreviations: Treg THU d3 = alloantigen-specific Treg cells; GFP d3 = GFP-transduced alloantigen-specific Th cells (CD4-39); FoxP3 d3 = FOXP-transduced alloantigen-specific Th cells (CD4-39); Garp d3 = GARP-transduced alloantigen-specific Th cells (CD4-39); all stimulated for 3 days (=d3) with EBV B cells and IL2.
Project description:Goals and objectives of this study: to identify genes of the Treg signature induced by consitutive expression of GARP or FOXP3 in antigen-specific Th cells with potential role for stabililization & maintenance of the regulatory program. Keywords: T-cell receptor stimulation, gene-regulation, comparative gene expression profiling, cell type comparison, human, regulatory T cells, FOXP3, GARP
Project description:Analysis of Foxp3(+)epigenetics(-) T cells, Foxp3(-)epigenetics(+) T cells, and Foxp3(+)epigenetics(+) T cells. Results indicate regulatory T cell (Treg) ontogenesis requires two independent processes, expression of the transcription factor Foxp3 and establishment of Treg epigenetic programs induced by T cell receptor (TCR) stimulation. GFP+CD4+ and GFP-CD4+ splenocytes were sorted from DEREG and DEREG/Scurfy mice. These cells were activated with anti-CD3/CD28 antibodies, and then transduced with Foxp3-expressing retrovirus (pGCSamIN, NGFR marker). NGFR+ T cells sorted were subjected to microarray analysis (Affymetrix, mouse genome 430 2.0 array). To normalize the experimental conditions, Tregs (GFP+ T cells from DEREG) and Tconv (GFP- T cells from DEREG) were also activated and transduced with empty vector. Two replicates each.
Project description:FoxP3 is a central regulator of immunological tolerance, controlling the development and function of regulatory T (Treg) cells. To dissect the complex processes orchestrated by FoxP3, we investigated impacts of three autoimmune disease-associated missense FoxP3 mutations in mice. As a initial approach, we retrovirally transduced naïve conventional T (Tconv) cells with WT or mutant (A384T and R397W) FoxP3 and analyzed the gene expression profiles of the transduced T cells.
Project description:The transcription factor FoxP3 partakes dominantly in the specification and function of FoxP3+ CD4+ T regulatory cells (Tregs), but is neither strictly necessary nor sufficient to determine the characteristic Treg transcriptional signature. Computational network inference and experimental testing assessed the contribution of several other transcription factors (TFs). Enforced expression of Helios or Xbp1 elicited specific signatures, but Eos, Irf4, Satb1, Lef1 and Gata1 elicited exactly the same outcome, synergizing with FoxP3 to activate most of the Treg signature, including key TFs, and enhancing FoxP3 occupancy at its genomic targets. Conversely, the Treg signature was robust to inactivation of any single cofactor. A redundant genetic switch thus locks-in the Treg phenotype, a model which accounts for several aspects of Treg physiology, differentiation and stability. To study the impact of FoxP3 and its candidate cofactors (Eos, Gata1, Helios, Irf4, Lef1, Satb1, Xbp1) on the expression of the Treg transcriptional signature, CD4+ conventional T cells (Tconv) activated with anti-CD3+CD28 beads were retrovirally transduced with cDNAs encoding FOXP3, candidate TFs, or a combination of FOXP3 and candidate TFs. After 3 days in culture, the transduced cells were sorted into Trizol, and RNA was purified, labeled and hybridized to Affymetrix arrays.
Project description:The transcription factor (TF) Forkhead Box P3 (FOXP3) is constitutively expressed in high levels in natural occurring CD4+CD25+ regulatory T cells (nTreg) and is not only the most accepted marker for that cell population, but is considered lineage determinative. Chromatin immunoprecipitation (ChIP) of transcription factors in combination with genomic tiling microarray analysis (ChIP-on-Chip) has been shown to be an appropriate tool to identify FOXP3 transcription factor binding sites (TFBS) on a genome-wide scale. In combination with microarray expression analysis the ChIP-on-Chip technique allows to identify direct FOXP3 target genes. This dataset shows expression data of resting and mitogen stimulated (PMA / ionomycin) retrovirally transduced Jurkat T cells either expressing FOXP3(Δ2) (J-FOXP3) or an empty vector control (J-GFP).
Project description:To clarify how Foxp3 regulates its target genes, we performed co-immunoprecipitation experiments and found that Foxp3 physically bound to AML1/Runx1 (Ono, M. et al, Nature, 2007). In this series of study, we compared gene regulations by AML1, wild type Foxp3, and a Foxp3 mutant with defective binding to AML1. Experiment Overall Design: CD4+ naive T cells were activated and retrovirally gene-transduced with either empty vector (pMCsIg), or AML1-, wild type Foxp3-, or an AML1-non binding mutant Foxp3-encoding vectors. Sixty hours after transfection, 5 x 10^6 GFP-expressing cells were sorted and total RNA was extracted. One cycle target labelling protocol was used for labelling RNA with biotin.
Project description:Human CD4+CD45RA+CD25- cells were lentivirally transduced with wild-type or mutated (A384T or R397W) FOXP3, or an empty vector (EV). Transduced cells were sorted 14 days post-transduction based on GFP expression, and were restimulated with soluble anti-CD3 (30 ng/mL) and irradiated PBMCs (3x) for 14 more days. Cells were then activated with 0.5 μg/ml of phytohemagglutinin (PHA) in the presence or absence of SGF003 (8 μg/mL), and total RNA was extracted for microarray analysis. Overall, this study highlights the functional impact of TIP60 in FOXP3-driven Treg biology and provides a novel target for manipulation of human Treg activity. This study analyzes the transcriptional changes induced by the ectopic expression of FOXP3 in human effector T cells. It also assesses the impact of the enhancement of TIP60/FOXP3 interaction using the TIP60 modifier SGF003
Project description:The transcription factor (TF) Forkhead Box P3 (FOXP3) is constitutively expressed in high levels in natural occurring CD4+CD25+ regulatory T cells (nTreg) and is not only the most accepted marker for that cell population, but is considered lineage determinative. Chromatin immunoprecipitation (ChIP) of transcription factors in combination with genomic tiling microarray analysis (ChIP-on-Chip) has been shown to be an appropriate tool to identify FOXP3 transcription factor binding sites (TFBS) on a genome-wide scale. In combination with microarray expression analysis the ChIP-on-Chip technique allows to identify direct FOXP3 target genes. This dataset shows expression data of resting and mitogen stimulated (PMA / ionomycin) retrovirally transduced Jurkat T cells either expressing FOXP3(M-NM-^T2) (J-FOXP3) or an empty vector control (J-GFP). Expression profile of resting and PMA/ionomycin stimulated J-GFP and J-FOXP3 cells was analyzed (one microarray per condition).