Project description:<h4>Background</h4>The classical (C) MIKC-type MADS-box transcription factors comprise one gene family that plays diverse roles in the flowering process ranging from floral initiation to the development of floral organs. Despite their importance in regulating developmental processes that impact crop yield, they remain largely unexplored in the major legume oilseed crop, soybean.<h4>Results</h4>We identified 57 MIKC(c)-type transcription factors from soybean and determined the in silico gene expression profiles of the soybean MIKC(c)-type genes across different tissues. Our study implicates three MIKC(c)-type transcription factors as novel members of the AGAMOUS LIKE 6 (AGL6) subfamily of the MIKC(C)-type MADS-box genes, and we named this sister clade PsMADS3. While similar genes were identified in other legume species, poplar and grape, no such gene is represented in Arabidopsis thaliana or rice. RT-PCR analysis on these three soybean PsMADS3 genes during early floral initiation processes revealed their temporal expression similar to that of APETALA1, a gene known to function as a floral meristem identity gene. However, RNA in situ hybridisation showed that their spatial expression patterns are markedly different from those of APETALA1.<h4>Conclusion</h4>Legume flower development system differs from that in the model plant, Arabidopsis. There is an overlap in the initiation of different floral whorls in soybean, and inflorescent meristems can revert to leaf production depending on the environmental conditions. MIKC(C)-type MADS-box genes have been shown to play key regulatory roles in different stages of flower development. We identified members of the PsMADS3 sub-clade in legumes that show differential spatial expression during floral initiation, indicating their potential novel roles in the floral initiation process. The results from this study will contribute to a better understanding of legume-specific floral developmental processes.
Project description:The MADS-domain transcription factor APETALA1 (AP1) is a key regulator of Arabidopsis flower development. To understand the molecular mechanisms underlying AP1 function, we identified its target genes during floral initiation using a combination of gene expression profiling and genome-wide binding studies. Many of its targets encode transcriptional regulators, including known floral repressors. The latter genes are down-regulated by AP1, suggesting that it initiates floral development by abrogating the inhibitory effects of these genes. While AP1 acts predominantly as a transcriptional repressor during the earliest stages of flower development, regulatory genes known to be required for floral organ formation were found to be activated by AP1 at more advanced stages, indicating a dynamic mode of action. Our results further imply that AP1 orchestrates floral initiation by integrating growth, patterning and hormonal pathways. We used the AP1-GR system to conduct chromatin immunoprecipitation experiments with AP1-specific antibodies followed by deep-sequencing (ChIP-Seq) in order to determine AP1 binding sites on a genome-wide scale. Samples were generated from tissue in which the AP1-GR protein was induced for 2h using a single treatment of 1 uM DEX to the shoot apex. As control, we performed ChIP experiments using the same antibody on uninduced tissue. Experiments were done in two biological replicates.
Project description:The MADS-domain transcription factor APETALA1 (AP1) is a key regulator of Arabidopsis flower development. To understand the molecular mechanisms underlying AP1 function, we identified its target genes during floral initiation using a combination of gene expression profiling and genome-wide binding studies. Many of its targets encode transcriptional regulators, including known floral repressors. The latter genes are down-regulated by AP1, suggesting that it initiates floral development by abrogating the inhibitory effects of these genes. While AP1 acts predominantly as a transcriptional repressor during the earliest stages of flower development, regulatory genes known to be required for floral organ formation were found to be activated by AP1 at more advanced stages, indicating a dynamic mode of action. Our results further imply that AP1 orchestrates floral initiation by integrating growth, patterning and hormonal pathways. We used the AP1-GR system to conduct chromatin immunoprecipitation experiments with AP1-specific antibodies followed by deep-sequencing (ChIP-Seq) in order to determine AP1 binding sites on a genome-wide scale. Samples were generated from tissue in which the AP1-GR protein was induced for 2h using a single treatment of 1 uM DEX to the shoot apex. As control, we performed ChIP experiments using the same antibody on uninduced tissue. Experiments were done in two biological replicates.
Project description:A recessive mutation in the Arabidopsis STERILE APETALA (SAP) causes severe aberrations in inflorescence and flower and ovule development. In sap flowers, sepals are carpelloid, petals are short and narrow or absent, and anthers are degenerated. Megasporogenesis, the process of meiotic divisions preceding the female gametophyte formation, is arrested in sap ovules during or just after the first meiotic division. More severe aberrations were observed in double mutants between sap and mutant alleles of the floral homeotic gene APETALA2 (AP2) suggesting that both genes are involved in the initiation of female gametophyte development. Together with the organ identity gene AGAMOUS (AG) SAP is required for the maintenance of floral identity acting in a manner similar to APETALA1. In contrast to the outer two floral organs in sap mutant flowers, normal sepals and petals develop in ag/sap double mutants, indicating that SAP negatively regulates AG expression in the perianth whorls. This supposed cadastral function of SAP is supported by in situ hybridization experiments showing ectopic expression of AG in the sap mutant. We have cloned the SAP gene by transposon tagging and revealed that it encodes a novel protein with sequence motifs, that are also present in plant and animal transcription regulators. Consistent with the mutant phenotype, SAP is expressed in inflorescence and floral meristems, floral organ primordia, and ovules. Taken together, we propose that SAP belongs to a new class of transcription regulators essential for a number of processes in Arabidopsis flower development.
Project description:We have further characterized floral organ-localized gene expression in the inflorescence of Arabidopsis thaliana by comparison of massively parallel signature sequencing (MPSS) data. Six libraries of RNA sequence tags from immature inflorescence tissues were constructed and matched to their respective loci in the annotated Arabidopsis genome. These signature libraries survey the floral transcriptome of wild-type tissue as well as the floral homeotic mutants, apetala1, apetala3, agamous, a superman/apetala1 double mutant, and differentiated ovules dissected from the gynoecia of wild-type inflorescences. Comparing and contrasting these MPSS floral expression libraries enabled demarcation of transcripts enriched in the petals, stamens, stigma-style, gynoecia, and those with predicted enrichment within the sepal/sepal-petals, petal-stamens, or gynoecia-stamens.By comparison of expression libraries, a total of 572 genes were found to have organ-enriched expression within the inflorescence. The bulk of characterized organ-enriched transcript diversity was noted in the gynoecia and stamens, whereas fewer genes demonstrated sepal or petal-localized expression. Validation of the computational analyses was performed by comparison with previously published expression data, in situ hybridizations, promoter-reporter fusions, and reverse transcription PCR. A number of well-characterized genes were accurately delineated within our system of transcript filtration. Moreover, empirical validations confirm MPSS predictions for several genes with previously uncharacterized expression patterns.This extensive MPSS analysis confirms and supplements prior microarray floral expression studies and illustrates the utility of sequence survey-based expression analysis in functional genomics. Spatial floral expression data accrued by MPSS and similar methods will be advantageous in the elucidation of more comprehensive genetic regulatory networks governing floral development.
Project description:Phylogenetic analyses of angiosperm MADS-box genes suggest that this gene family has undergone multiple duplication events followed by sequence divergence. To determine when such events have taken place and to understand the relationships of particular MADS-box gene lineages, we have identified APETALA1/FRUITFULL-like MADS-box genes from a variety of angiosperm species. Our phylogenetic analyses show two gene clades within the core eudicots, euAP1 (including Arabidopsis APETALA1 and Antirrhinum SQUAMOSA) and euFUL (including Arabidopsis FRUITFULL). Non-core eudicot species have only sequences similar to euFUL genes (FUL-like). The predicted protein products of euFUL and FUL-like genes share a conserved C-terminal motif. In contrast, predicted products of members of the euAP1 gene clade contain a different C terminus that includes an acidic transcription activation domain and a farnesylation signal. Sequence analyses indicate that the euAP1 amino acid motifs may have arisen via a translational frameshift from the euFUL/FUL-like motif. The euAP1 gene clade includes key regulators of floral development that have been implicated in the specification of perianth identity. However, the presence of euAP1 genes only in core eudicots suggests that there may have been changes in mechanisms of floral development that are correlated with the fixation of floral structure seen in this clade.
Project description:APETALA1 (AP1) encodes a key MADS-box transcription factor that specifies the floral meristem identity on the flank of the inflorescence meristem, and determines the identity of perianth floral organs in the model plant Arabidopsis thaliana. Orchids are members of the Orchidaceae, one of the largest families of angiosperms. Although the expression patterns of a few AP1-like genes in orchids have been reported, their actual functions in orchid reproductive development are so far largely unknown. In this study, we isolated and characterized an AP1 ortholog, DOAP1, from Dendrobium Chao Praya Smile. DOAP1 was highly expressed in reproductive tissues, including inflorescence apices and flowers at various developmental stages. Overexpression of DOAP1 resulted in early flowering in Arabidopsis, and was able to rescue the floral organ defects of Arabidopsis ap1 mutants. Moreover, we successfully created transgenic Dendrobium Chao Praya Smile orchids overexpressing DOAP1, which displayed earlier flowering and earlier termination of inflorescence meristems into floral meristems than wild-type orchids. Our results demonstrate that DOAP1 plays an evolutionarily conserved role in promoting flowering and floral meristem specification in the Orchidaceae family.