Project description:Histone chaperones, chromatin remodelers, and histone modifying complexes play a critical role in alleviating the nucleosomal barrier for DNA-dependent processes. Here, we have examined the role of two highly conserved yeast (Saccharomyces cerevisiae) histone chaperones, facilitates chromatin transcription (FACT) and Spt6, in regulating transcription. We show that the H3 tail contributes to the recruitment of FACT to coding sequences in a manner dependent on acetylation. We found that deleting a H3 histone acetyltransferase Gcn5 or mutating lysines on the H3 tail impairs FACT recruitment at ADH1 and ARG1 genes. However, deleting the H4 tail or mutating the H4 lysines failed to dampen FACT occupancy in coding regions. Additionally, we show that FACT depletion reduces RNA polymerase II (Pol II) occupancy genome-wide. Spt6 depletion leads to a reduction in Pol II occupancy toward the 3'-end, in a manner dependent on the gene length. Severe transcription and histone-eviction defects were also observed in a strain that was impaired for Spt6 recruitment (spt6Δ202) and depleted of FACT. Importantly, the severity of the defect strongly correlated with wild-type Pol II occupancies at these genes, indicating critical roles for Spt6 and Spt16 in promoting high-level transcription. Collectively, our results show that both FACT and Spt6 are important for transcription globally and may participate during different stages of transcription.
Project description:Spt6 is a highly conserved factor required for normal transcription and chromatin structure. To gain new insights into the roles of Spt6, we measured nucleosome occupancy along Saccharomyces cerevisiae chromosome III in an spt6 mutant. We found that the level of nucleosomes is greatly reduced across some, but not all, coding regions in an spt6 mutant, with nucleosome loss preferentially occurring over highly transcribed genes. This result provides strong support for recent studies that have suggested that transcription at low levels does not displace nucleosomes, while transcription at high levels does, and adds the idea that Spt6 is required for restoration of nucleosomes at the highly transcribed genes. Unexpectedly, our studies have also suggested that the spt6 effects on nucleosome levels across coding regions do not cause the spt6 effects on mRNA levels, suggesting that the role of Spt6 across coding regions is separate from its role in transcriptional regulation. In the case of the CHA1 gene, regulation by Spt6 likely occurs by controlling the position of the +1 nucleosome. These results, along with previous studies, suggest that Spt6 regulates transcription by controlling chromatin structure over regulatory regions, and its effects on nucleosome levels over coding regions likely serve an independent function.
Project description:To physically characterize the web of interactions connecting the Saccharomyces cerevisiae proteins suspected to be RNA polymerase II (RNAPII) elongation factors, subunits of Spt4/Spt5 and Spt16/Pob3 (corresponding to human DSIF and FACT), Spt6, TFIIF (Tfg1, -2, and -3), TFIIS, Rtf1, and Elongator (Elp1, -2, -3, -4, -5, and -6) were affinity purified under conditions designed to minimize loss of associated polypeptides and then identified by mass spectrometry. Spt16/Pob3 was discovered to associate with three distinct complexes: histones; Chd1/casein kinase II (CKII); and Rtf1, Paf1, Ctr9, Cdc73, and a previously uncharacterized protein, Leo1. Rtf1 and Chd1 have previously been implicated in the control of elongation, and the sensitivity to 6-azauracil of strains lacking Paf1, Cdc73, or Leo1 suggested that these proteins are involved in elongation by RNAPII as well. Confirmation came from chromatin immunoprecipitation (ChIP) assays demonstrating that all components of this complex, including Leo1, cross-linked to the promoter, coding region, and 3' end of the ADH1 gene. In contrast, the three subunits of TFIIF cross-linked only to the promoter-containing fragment of ADH1. Spt6 interacted with the uncharacterized, essential protein Iws1 (interacts with Spt6), and Spt5 interacted either with Spt4 or with a truncated form of Spt6. ChIP on Spt6 and the novel protein Iws1 resulted in the cross-linking of both proteins to all three regions of the ADH1 gene, suggesting that Iws1 is likely an Spt6-interacting elongation factor. Spt5, Spt6, and Iws1 are phosphorylated on consensus CKII sites in vivo, conceivably by the Chd1/CKII associated with Spt16/Pob3. All the elongation factors but Elongator copurified with RNAPII.
Project description:Saccharomyces cerevisiae Spt6 protein is a conserved chromatin factor with several distinct functional domains, including a natively unstructured 30-residue N-terminal region that binds competitively with Spn1 or nucleosomes. To uncover physiological roles of these interactions, we isolated histone mutations that suppress defects caused by weakening Spt6:Spn1 binding with the spt6-F249K mutation. The strongest suppressor was H2A-N39K, which perturbs the point of contact between the two H2A-H2B dimers in an assembled nucleosome. Substantial suppression also was observed when the H2A-H2B interface with H3-H4 was altered, and many members of this class of mutations also suppressed a defect in another essential histone chaperone, FACT. Spt6 is best known as an H3-H4 chaperone, but we found that it binds with similar affinity to H2A-H2B or H3-H4. Like FACT, Spt6 is therefore capable of binding each of the individual components of a nucleosome, but unlike FACT, Spt6 did not produce endonuclease-sensitive reorganized nucleosomes and did not displace H2A-H2B dimers from nucleosomes. Spt6 and FACT therefore have distinct activities, but defects can be suppressed by overlapping histone mutations. We also found that Spt6 and FACT together are nearly as abundant as nucleosomes, with ?24,000 Spt6 molecules, ?42,000 FACT molecules, and ?75,000 nucleosomes per cell. Histone mutations that destabilize interfaces within nucleosomes therefore reveal multiple spatial regions that have both common and distinct roles in the functions of these two essential and abundant histone chaperones. We discuss these observations in terms of different potential roles for chaperones in both promoting the assembly of nucleosomes and monitoring their quality.
Project description:Spt6 is a conserved factor that controls transcription and chromatin structure across the genome. Although Spt6 is viewed as an elongation factor, spt6 mutations in Saccharomyces cerevisiae allow elevated levels of transcripts from within coding regions, suggesting that Spt6 also controls initiation. To address the requirements for Spt6 in transcription and chromatin structure, we have combined four genome-wide approaches. Our results demonstrate that Spt6 represses transcription initiation at thousands of intragenic promoters. We characterize these intragenic promoters and find sequence features conserved with genic promoters. Finally, we show that Spt6 also regulates transcription initiation at most genic promoters and propose a model of initiation site competition to account for this. Together, our results demonstrate that Spt6 controls the fidelity of transcription initiation throughout the genome.
Project description:Spt6 is a highly conserved factor that carries out important functions in transcription and chromatin structure. To gain new insights into Spt6, we measured nucleosome occupancy along Saccharomyces cerevisiae chromosome III in an spt6 mutant and found that the level of nucleosomes is greatly reduced accross some but not all coding regions. In addition, genome-wide location analyses of RNA polymerase II showed that the nucleosome loss in the spt6 mutant occurs over highly-transcribed genes. Unexpectedly, the effects of the spt6 mutation on nucleosome levels did not correlate with its effects on mRNA levels, suggesting that Spt6 plays distinct roles in controlling chromatin structure across coding regions and in transcriptional regulation. We studied one case of transcriptional regulation by Stp6, at the CHA1 gene, and showed that regulation likely occurs by Spt6 controlling the position of the +1 nucleosome. These results, along with previous studies, suggest that Spt6 regulates transcription by controlling chromatin structure over regulatory regions, and its effects on nucleosome levels over coding regions likely serve and independent function. In order to examine the genome-wide localization of RNAPII and Spt6 in Saccharomyces cerevisiae, RNAPII and Spt6 along with associated DNA sequences were immunoprecipitated using anti-8WG16 and anti-HA antibodies, respectively. The RNAPII and Spt6 chromatin immunoprecipitation was performed in duplicate from WT cells as described below. The extracted DNA was hybridized to a DNA microarray containing an average of 4 probes per kilobase across the whole yeast genome. The combined datasets are available in the supplemental files of the related publication.
Project description:Previous characterization of the Saccharomyces cerevisiae Spt4, Spt5, and Spt6 proteins suggested that these proteins act as transcription factors that modify chromatin structure. In this work, we report new genetic and biochemical studies of Spt4, Spt5, and Spt6 that reveal a role for these factors in transcription elongation. We have isolated conditional mutations in SPT5 that can be suppressed in an allele-specific manner by mutations in the two largest subunits of RNA polymerase II (Pol II). Strikingly, one of these RNA Pol II mutants is defective for transcription elongation and the others cause phenotypes consistent with an elongation defect. In addition, we show that spt4, spt5, and spt6 mutants themselves have phenotypes suggesting defects in transcription elongation in vivo. Consistent with these findings, we show that Spt5 is physically associated with RNA Pol II in vivo, and have identified a region of sequence similarity between Spt5 and NusG, an Escherichia coli transcription elongation factor that binds directly to RNA polymerase. Finally, we show that Spt4 and Spt5 are tightly associated in a complex that does not contain Spt6. These results, taken together with the biochemical identification of a human Spt4-Spt5 complex as a transcription elongation factor (Wada et al. 1998), provide strong evidence that these factors are important for transcription elongation in vivo.
Project description:Spt6 is a highly conserved factor that carries out important functions in transcription and chromatin structure. To gain new insights into Spt6, we measured nucleosome occupancy along Saccharomyces cerevisiae chromosome III in an spt6 mutant and found that the level of nucleosomes is greatly reduced accross some but not all coding regions. In addition, genome-wide location analyses of RNA polymerase II showed that the nucleosome loss in the spt6 mutant occurs over highly-transcribed genes. Unexpectedly, the effects of the spt6 mutation on nucleosome levels did not correlate with its effects on mRNA levels, suggesting that Spt6 plays distinct roles in controlling chromatin structure across coding regions and in transcriptional regulation. We studied one case of transcriptional regulation by Stp6, at the CHA1 gene, and showed that regulation likely occurs by Spt6 controlling the position of the +1 nucleosome. These results, along with previous studies, suggest that Spt6 regulates transcription by controlling chromatin structure over regulatory regions, and its effects on nucleosome levels over coding regions likely serve and independent function. Overall design: In order to examine the genome-wide localization of RNAPII and Spt6 in Saccharomyces cerevisiae, RNAPII and Spt6 along with associated DNA sequences were immunoprecipitated using anti-8WG16 and anti-HA antibodies, respectively. The RNAPII and Spt6 chromatin immunoprecipitation was performed in duplicate from WT cells as described below. The extracted DNA was hybridized to a DNA microarray containing an average of 4 probes per kilobase across the whole yeast genome. The combined datasets are available in the supplemental files of the related publication.
Project description:Spn1/Iws1 is a conserved protein involved in transcription and chromatin dynamics, yet its general in vivo requirement for these functions is unknown. Using a Spn1 depletion system in Saccharomyces cerevisiae, we demonstrate that Spn1 broadly influences several aspects of gene expression on a genome-wide scale. We show that Spn1 is globally required for normal mRNA levels and for normal splicing of ribosomal protein transcripts. Furthermore, Spn1 maintains the localization of H3K36 and H3K4 methylation across the genome and is required for normal histone levels at highly expressed genes. Finally, we show that the association of Spn1 with the transcription machinery is strongly dependent on its binding partner, Spt6, while the association of Spt6 and Set2 with transcribed regions is partially dependent on Spn1. Taken together, our results show that Spn1 affects multiple aspects of gene expression and provide additional evidence that it functions as a histone chaperone in vivo.
Project description:In yeast, environmental stresses provoke sudden and dramatic increases in gene expression at stress-inducible loci. Stress gene transcription is accompanied by the transient eviction of histones from the promoter and the transcribed regions of these genes. We found that mutants defective in subunits of the INO80 complex, as well as in several histone chaperone systems, exhibit extended expression windows that can be correlated with a distinct delay in histone redeposition during adaptation. Surprisingly, Ino80 became associated with the ORFs of stress genes in a stress-specific way, suggesting a direct function in the repression during adaptation. This recruitment required elongation by RNA polymerase (Pol) II but none of the histone modifications that are usually associated with active transcription, such as H3 K4/K36 methylation. A mutant lacking the Asf1-associated H3K56 acetyltransferase Rtt109 or Asf1 itself also showed enhanced stress-induced transcript levels. Genetic data, however, suggest that Asf1 and Rtt109 function in parallel with INO80 to restore histone homeostasis, whereas Spt6 seems to have a function that overlaps that of the chromatin remodeler. Thus, chromatin remodeling by INO80 in cooperation with Spt6 determines the shape of the expression profile under acute stress conditions, possibly by an elongation-dependent mechanism.