Project description:The physiology of filamentous fungi at growth rates approaching zero has been subject to limited study and exploitation. With the aim of uncoupling product formation from growth, we have revisited and improved the retentostat cultivation method for Aspergillus niger. A new retention device was designed allowing reliable and nearly complete cell retention even at high flow rates. Transcriptomic analysis was used to explore the potential for product formation at very low specific growth rates. The carbon- and energy-limited retentostat cultures were highly reproducible. While the specific growth rate approached zero (<0.005 h(-1)), the growth yield stabilized at a minimum (0.20 g of dry weight per g of maltose). The severe limitation led to asexual differentiation, and the supplied substrate was used for spore formation and secondary metabolism. Three physiologically distinct phases of the retentostat cultures were subjected to genome-wide transcriptomic analysis. The severe substrate limitation and sporulation were clearly reflected in the transcriptome. The transition from vegetative to reproductive growth was characterized by downregulation of genes encoding secreted substrate hydrolases and cell cycle genes and upregulation of many genes encoding secreted small cysteine-rich proteins and secondary metabolism genes. Transcription of known secretory pathway genes suggests that A. niger becomes adapted to secretion of small cysteine-rich proteins. The perspective is that A. niger cultures as they approach a zero growth rate can be used as a cell factory for production of secondary metabolites and cysteine-rich proteins. We propose that the improved retentostat method can be used in fundamental studies of differentiation and is applicable to filamentous fungi in general.
Project description:This work presents an exploration of submerged differentiation of the ubiquitous saprophyte and industrially important fungus, Aspergillus niger, in response to a limited availability of a sole carbon and energy source, maltose. In aspergilli and other mold fungi, asexual reproduction through formation of elaborate conidiogenic structures normally requires an aerial interface. This requirement is bypassed in submerged culture in response to severe nutrient limitation. Continuous cultures with cell retention (retentostat cultures) were applied to generate a fundamental physiological state, where the specific growth rate approaches zero, as the density of the cell population adapts to the supply of the limiting energy source. Temporal differentiation of mycelium structure and commitment to asexual reproduction were major phenomena, apparent on biochemical, morphological, physiological, and transcriptomic level. The severe substrate limitation had a rapid negative impact on cytoplasmic processes, and promoted endo- and exogenous nutrient mobilization, and hyphal compartmentalisation. The first conidiogenic structures appeared after one day with little additional differentiation until Day 4 to 6, where a transition to full commitment to reproductive growth took place. Submerged conidiation in A. niger involved transcriptional regulation of homologs of the regulatory pathway, centered around the Bristle gene (brlA), and structural genes previously described in other aspergilli. Comparison of transcriptomes, revealed a number of co-regulated gene clusters, which appear to encode secondary metabolite biosynthetic potential. We discuss the concept of maintenance energy in the context of differentiation, a possible physiological trigger for sporulation and the special physiological adaptations of the starved mycelium. We also present a simple and efficient method for in situ retention of filamentous organisms. Overall design: The dataset consists of 9 Affymetrix arrays derived from defined growth conditions of lab-scale bioreactor cultures (5L). Total RNA was extracted from biomass harvested at three different growth phases: exponential growth phase, 2 and 8 days of retentostat cultivation. For each of the phases, the data is derived from three biological replicates.
Project description:This work presents an exploration of submerged differentiation of the ubiquitous saprophyte and industrially important fungus, Aspergillus niger, in response to a limited availability of a sole carbon and energy source, maltose. In aspergilli and other mold fungi, asexual reproduction through formation of elaborate conidiogenic structures normally requires an aerial interface. This requirement is bypassed in submerged culture in response to severe nutrient limitation. Continuous cultures with cell retention (retentostat cultures) were applied to generate a fundamental physiological state, where the specific growth rate approaches zero, as the density of the cell population adapts to the supply of the limiting energy source. Temporal differentiation of mycelium structure and commitment to asexual reproduction were major phenomena, apparent on biochemical, morphological, physiological, and transcriptomic level. The severe substrate limitation had a rapid negative impact on cytoplasmic processes, and promoted endo- and exogenous nutrient mobilization, and hyphal compartmentalisation. The first conidiogenic structures appeared after one day with little additional differentiation until Day 4 to 6, where a transition to full commitment to reproductive growth took place. Submerged conidiation in A. niger involved transcriptional regulation of homologs of the regulatory pathway, centered around the Bristle gene (brlA), and structural genes previously described in other aspergilli. Comparison of transcriptomes, revealed a number of co-regulated gene clusters, which appear to encode secondary metabolite biosynthetic potential. We discuss the concept of maintenance energy in the context of differentiation, a possible physiological trigger for sporulation and the special physiological adaptations of the starved mycelium. We also present a simple and efficient method for in situ retention of filamentous organisms. The dataset consists of 9 Affymetrix arrays derived from defined growth conditions of lab-scale bioreactor cultures (5L). Total RNA was extracted from biomass harvested at three different growth phases: exponential growth phase, 2 and 8 days of retentostat cultivation. For each of the phases, the data is derived from three biological replicates.
Project description:A rhamnogalacturonan hydrolase gene of Aspergillus aculeatus was used as a probe for the cloning of two rhamnogalacturonan hydrolase genes of Aspergillus niger. The corresponding proteins, rhamnogalacturonan hydrolases A and B, are 78 and 72% identical, respectively, with the A. aculeatus enzyme. In A. niger cultures which were shifted from growth on sucrose to growth on apple pectin as a carbon source, the expression of the rhamnogalacturonan hydrolase A gene (rhgA) was transiently induced after 3 h of growth on apple pectin. The rhamnogalacturonan hydrolase B gene was not induced by apple pectin, but the rhgB gene was derepressed after 18 h of growth on either apple pectin or sucrose. Gene fusions of the A. niger rhgA and rhgB coding regions with the strong and inducible Aspergillus awamori exlA promoter were used to obtain high-producing A. awamori transformants which were then used for the purification of the two A. niger rhamnogalacturonan hydrolases. High-performance anion-exchange chromatography of oligomeric degradation products showed that optimal degradation of an isolated highly branched pectin fraction by A. niger rhamnogalacturonan hydrolases A and B occurred at pH 3.6 and 4.1, respectively. The specific activities of rhamnogalacturonan hydrolases A and B were then 0.9 and 0.4 U/mg, respectively, which is significantly lower than the specific activity of A. aculeatus rhamnogalacturonan hydrolase (2.5 U/mg at an optimal pH of 4.5). Compared to the A enzymes, the A. niger B enzyme appears to have a different substrate specificity, since additional oligomers are formed.
Project description:<h4>Background</h4>The filamentous fungus, Aspergillus niger, responds to nutrient availability by modulating secretion of various substrate degrading hydrolases. This ability has made it an important organism in industrial production of secreted glycoproteins. The recent publication of the A. niger genome sequence and availability of microarrays allow high resolution studies of transcriptional regulation of basal cellular processes, like those of glycoprotein synthesis and secretion. It is known that the activities of certain secretory pathway enzymes involved N-glycosylation are elevated in response to carbon source induced secretion of the glycoprotein glucoamylase. We have investigated whether carbon source dependent enhancement of protein secretion can lead to upregulation of secretory pathway elements extending beyond those involved in N-glycosylation.<h4>Results</h4>This study compares the physiology and transcriptome of A. niger growing at the same specific growth rate (0.16 h(-1)) on xylose or maltose in carbon-limited chemostat cultures. Transcription profiles were obtained using Affymetrix GeneChip analysis of six replicate cultures for each of the two growth-limiting carbon sources. The production rate of extracellular proteins per gram dry mycelium was about three times higher on maltose compared to xylose. The defined culture conditions resulted in high reproducibility, discriminating even low-fold differences in transcription, which is characteristic of genes encoding basal cellular functions. This included elements in the secretory pathway and central metabolic pathways. Increased protein secretion on maltose was accompanied by induced transcription of > 90 genes related to protein secretion. The upregulated genes encode key elements in protein translocation to the endoplasmic reticulum (ER), folding, N-glycosylation, quality control, and vesicle packaging and transport between ER and Golgi. The induction effect of maltose resembles the unfolded protein response (UPR), which results from ER-stress and has previously been defined by treatment with chemicals interfering with folding of glycoproteins or by expression of heterologous proteins.<h4>Conclusion</h4>We show that upregulation of secretory pathway genes also occurs in conditions inducing secretion of endogenous glycoproteins - representing a more normal physiological state. Transcriptional regulation of protein synthesis and secretory pathway genes may thus reflect a general mechanism for modulation of secretion capacity in response to the conditional need for extracellular enzymes.
Project description:The cultivation procedure and the fungal strain applied for enzyme production may influence levels and profile of the proteins produced. The proteomic analysis data presented here provide critical information to compare proteins secreted by Trichoderma reesei and Aspergillus niger when cultivated through submerged and sequential fermentation processes, using steam-explosion sugarcane bagasse as inducer for enzyme production. The proteins were organized according to the families described in CAZy database as cellulases, hemicellulases, proteases/peptidases, cell-wall-protein, lipases, others (catalase, esterase, etc.), glycoside hydrolases families, predicted and hypothetical proteins. Further detailed analysis of this data is provided in "Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation process: enzyme production for sugarcane bagasse hydrolysis" C. Florencio, F.M. Cunha, A.C Badino, C.S. Farinas, E. Ximenes, M.R. Ladisch (2016) [1].
Project description:Aspergillus niger produces a variety of lignocellulolytic enzymes (cellulases, hemicellulases, among others) and is regarded as cell factory for the production of heterologous proteins. Therefore, there is a growing interest in the study of its genes and the understanding of the cellular mechanisms in order to expand its applications. On the other hand, we have shown that enzyme production by A. niger is higher when grown forming biofilms than when grown conventionally in submerged systems. The objective of this study was to perform a global transcriptomic analysis and an expression analysis of both lignocellulases and biofilm regulatory genes as compared to A. niger in submerged culture. DNA microarray assays were performed to investigate the global gene expression which yielded information on the expression of more than 90% of A. niger genes. To further this comparison, the two culture systems were supplemented with different carbon sources (glucose, lactose, xylose and maltose) to establish a differential gene expression under different culture conditions. Also, to validate the differential expression qPCR was performed for quantitative comparison of the transcriptional level of genes in both culture systems. Organism : Aspergillus niger, Agilent Aspergillus niger Gene expression 4x44k Array AMADID: 032510 Grant Information: Grant Nº 072-FINCyT-PIN2008 from the National Program of Science and Technology of Peru Contributor: Institut Pasteur de Montevideo, Uruguay
Project description:Expression data from batch cultivations of Aspergillus niger wild type strain ATCC 1015 and adrA, facB and creA deletion mutants constructed on ATCC 1015 background strain with glucose or glycerol as carbon sources. Genome-wide transcriptome analysis was used to identify genes either affected directly or indirectly by each transcription factor investigated during growth on a repressing or a derepressing carbon source. For this purpose, batch cultivations under well-controlled conditions were performed with Aspergillus niger wild type strain ATCC 1015 and the three deletion mutants of the corresponding transcription factors AdrA, FacB and CreA. Samples for RNA extraction were collected and further processed for hybridization in custom-designed Affymetrix microarrays containing probes for three Aspergillus species, including A. niger. Overall design: Triplicate batch fermentations of each of the four Aspergillus niger strains used, the wild type A. niger strain ATCC 1015 and three gene deletion mutants, were carried out using glucose or glycerol as carbon source, and transcriptome analysis was performed. Biomass from each batch cultivation was harvested in the exponential phase of growth and further processed for RNA extraction and hybridization on Affymetrix microarrays.
Project description:<h4>Background</h4>The filamentous fungus Aspergillus niger encounters carbon starvation in nature as well as during industrial fermentations. In response, regulatory networks initiate and control autolysis and sporulation. Carbohydrate-active enzymes play an important role in these processes, for example by modifying cell walls during spore cell wall biogenesis or in cell wall degradation connected to autolysis.<h4>Results</h4>In this study, we used developmental mutants (?flbA and ?brlA) which are characterized by an aconidial phenotype when grown on a plate, but also in bioreactor-controlled submerged cultivations during carbon starvation. By comparing the transcriptomes, proteomes, enzyme activities and the fungal cell wall compositions of a wild type A. niger strain and these developmental mutants during carbon starvation, a global overview of the function of carbohydrate-active enzymes is provided. Seven genes encoding carbohydrate-active enzymes, including cfcA, were expressed during starvation in all strains; they may encode enzymes involved in cell wall recycling. Genes expressed in the wild-type during starvation, but not in the developmental mutants are likely involved in conidiogenesis. Eighteen of such genes were identified, including characterized sporulation-specific chitinases and An15g02350, member of the recently identified carbohydrate-active enzyme family AA11. Eight of the eighteen genes were also expressed, independent of FlbA or BrlA, in vegetative mycelium, indicating that they also have a role during vegetative growth. The ?flbA strain had a reduced specific growth rate, an increased chitin content of the cell wall and specific expression of genes that are induced in response to cell wall stress, indicating that integrity of the cell wall of strain ?flbA is reduced.<h4>Conclusion</h4>The combination of the developmental mutants ?flbA and ?brlA resulted in the identification of enzymes involved in cell wall recycling and sporulation-specific cell wall modification, which contributes to understanding cell wall remodeling mechanisms during development.
Project description:Ethanolic extracts of mycelia from Aspergillus niger (strain N402) grown in liquid media were observed to have haemolytic activity on bovine erythrocytes. This haemolytic activity decreased significantly during the time of growth (1-3 days). Moreover, when A. niger was grown on carbon-deprived medium, the efficiency of this haemolytic activity in the ethanolic extracts was much lower than when grown in carbon-enriched medium, and became almost undetectable after 3 days of growth in carbon-deprived medium. The lipid composition of these ethanolic extracts was analysed by liquid chromatography-electrospray ionisation tandem mass spectrometry. This haemolytic activity can be mainly linked to the relative levels of the molar ratios of the unsaturated fatty acids and lysophosphatidylcholines.