Project description:Five years of tamoxifen reduces breast cancer risk by nearly 50% but is associated with significant side-effects and toxicities. A better understanding of the direct and indirect effects of tamoxifen in benign breast tissue could elucidate new mechanisms of breast carcinogenesis, suggest novel chemoprevention targets, and provide relevant early response biomarkers for Phase II prevention trials. Seventy-three women at increased risk for breast cancer were randomized to tamoxifen (20 mg daily) or placebo for three months. Blood and breast tissue samples were collected at baseline and post-treatment. Sixty-nine women completed all study activities (37 tamoxifen and 32 placebo). The selected biomarkers focused on estradiol and IGFs in the blood, DNA methylation and cytology in random periareolar fine needle aspirates, and tissue morphometry, proliferation, apoptosis, and gene expression (microarray and RT-PCR) in the tissue core samples. Tamoxifen downregulated ets-oncogene family members ETV4 and ETV5 and reduced breast epithelial cell proliferation independent of CYP2D6 genotypes or effects on estradiol, ESR1 or IGFs. Reduction in proliferation was correlated with downregulation of ETV4 and DNAJC12. Tamoxifen also modulated expression of RAB GTPases, and several genes involved in epithelial-stromal interaction, and reduced tumor suppressor gene methylation. Three months of tamoxifen did not affect breast tissue composition, cytological atypia, preneoplasia or apoptosis. Tamoxifen may durably reduce breast cancer risk through downregulation of ETV4 and ETV5 which could deplete mammary progenitor populations. This pathway has the potential to provide novel targets and early response biomarkers for phase II prevention trials. Randomized prospective double blinded placebo-controlled trial of tamoxifen (20 mg daily) versus placeo in women at increased risk for breast cancer. Gene expression was assessed in whole breast tissue cores obtained at baseline and after three months of treatment for 35 women. Core biopsies were obtained in the late luteal phase (day 28 +/- 2) for premenopausal women (N = 19). Breast lobules from the baseline and post-treatment cores were microdissected for 5 tamoxifen subjects.
Project description:Five years of tamoxifen reduces breast cancer risk by nearly 50% but is associated with significant side-effects and toxicities. A better understanding of the direct and indirect effects of tamoxifen in benign breast tissue could elucidate new mechanisms of breast carcinogenesis, suggest novel chemoprevention targets, and provide relevant early response biomarkers for Phase II prevention trials. Seventy-three women at increased risk for breast cancer were randomized to tamoxifen (20 mg daily) or placebo for three months. Blood and breast tissue samples were collected at baseline and post-treatment. Sixty-nine women completed all study activities (37 tamoxifen and 32 placebo). The selected biomarkers focused on estradiol and IGFs in the blood, DNA methylation and cytology in random periareolar fine needle aspirates, and tissue morphometry, proliferation, apoptosis, and gene expression (microarray and RT-PCR) in the tissue core samples. Tamoxifen downregulated ets-oncogene family members ETV4 and ETV5 and reduced breast epithelial cell proliferation independent of CYP2D6 genotypes or effects on estradiol, ESR1 or IGFs. Reduction in proliferation was correlated with downregulation of ETV4 and DNAJC12. Tamoxifen also modulated expression of RAB GTPases, and several genes involved in epithelial-stromal interaction, and reduced tumor suppressor gene methylation. Three months of tamoxifen did not affect breast tissue composition, cytological atypia, preneoplasia or apoptosis. Tamoxifen may durably reduce breast cancer risk through downregulation of ETV4 and ETV5 which could deplete mammary progenitor populations. This pathway has the potential to provide novel targets and early response biomarkers for phase II prevention trials.
Project description:Gene expression profiling of invasive breast cancer events from the tamoxifen prevention trial validates low estrogen receptor mRNA level as the main determinant of tamoxifen resistance in estrogen receptor positive breast cancer. In NSABP Breast Cancer Prevention Trial (BCPT), tamoxifen reduced the incidence of estrogen receptor (ER) positive tumors but not estrogen receptor negative breast cancer. More importantly, only 69% of estrogen receptor positive tumors were prevented by tamoxifen. The ER positive tumors arising in tamoxifen arm provides an ideal clinical model for acquired tamoxifen resistance. Based on data from NSABP trial B14 which showed linear prediction of the degree of benefit from adjuvant tamoxifen by the levels of ESR1 mRNA coding for ER-alpha, we hypothesized a priori that level of ESR1 mRNA would be lower in ER positive tumors arising in tamoxifen arm compared to those in placebo arm of BCPT. Keywords: Gene expression profiling analysis Formalin fixed paraffin embedded tumor blocks with enough tumor tissue for RNA extraction were available from 108 cases (69 from placebo arm and 39 from tamoxifen arm) of the 264 that experienced invasive breast cancer (175 in placebo arm and 89 in tamoxifen arm) in BCPT before unblindings . Central ER immunohistochemistry identified 84 of them as ER positive (57 from placebo arm and 27 from tamoxifen arm). A novel protocol was developed and used to obtain microarray gene expression profiling from the degraded or fragmented RNA extracted from formalin fixed paraffin blocks.Hybridization intensity data were compiled using Partek Genomic Suite. After quantile normalization, genes with mean intensity below 500 were filtred out, which left 7743 probes with informative data. Data were log2 transformed for statistical analysis.
Project description:Adjuvant tamoxifen is a valid treatment option for women with estrogen receptor (ER)-positive breast cancer. However, up to 40% of patients experience distant or local recurrence or die. MicroRNAs have been suggested to be important prognosticators in breast cancer. This study aims to identify microRNAs with the potential to predict tamoxifen response. We performed a global microRNA screen in primary tumours of six matched pairs of postmenopausal, ER-positive breast cancer patients treated with tamoxifen, who were either recurrence free or had developed a recurrence. Patients were treated at the Robert Bosch Hospital, Stuttgart, Germany, between 1986 and 2005.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:We analyzed gene expression in human peripheral blood mononuclear cells (PBMCs) from breast cancer patients, patients with benign breast abnormalities, healthy cancer-free individuals as well as patients with other types of cancer (gastrointestinal and brain cancers). Peripheral blood mononuclear cell (PBMC) samples were collected from women with a suspect initial mammogram prior to undergoing a diagnostic biopsy procedure to determine whether the detected abnormality was benign or malignant. In total, we collected blood from 57 women with a diagnosis of breast cancer and 37 with a benign diagnosis. We also collected blood from 31 women with normal initial mammograms as negative controls and 15 breast cancer patients following surgery. All breast cancer patient samples were collected at the Duke University Medical Center (DUMC) under an institutional review board (IRB)-approved protocol (Duke eIRB#12025) after obtaining informed consent and were provided by Dr. Jeffrey Marks. PBMC samples from patients with various gastrointestinal cancers (n=15) were colelcted and stored at DUMC under IRB-approved protocols (Duke eIRB#12010 and 12025) and were provided by Dr. Jeffrey Marks. Peripheral blood leukocyte samples from patients with brain tumors (n=7) were provided by Dr. John Sampson and were collected by leukapheresis under Duke eIRB#00003877 and #00009403.
Project description:As the evolution of miRNA genes has been found to be one of the important factors in formation of the modern type of man, we performed a comparative analysis of the evolution of miRNA genes in two archaic hominines, Homo sapiens neanderthalensis and Homo sapiens denisova, and elucidated the expression of their target mRNAs in bain.A comparative analysis of the genomes of primates, including species in the genus Homo, identified a group of miRNA genes having fixed substitutions with important implications for the evolution of Homo sapiens neanderthalensis and Homo sapiens denisova. The mRNAs targeted by miRNAs with mutations specific for Homo sapiens denisova exhibited enhanced expression during postnatal brain development in modern humans. By contrast, the expression of mRNAs targeted by miRNAs bearing variations specific for Homo sapiens neanderthalensis was shown to be enhanced in prenatal brain development.Our results highlight the importance of changes in miRNA gene sequences in the course of Homo sapiens denisova and Homo sapiens neanderthalensis evolution. The genetic alterations of miRNAs regulating the spatiotemporal expression of multiple genes in the prenatal and postnatal brain may contribute to the progressive evolution of brain function, which is consistent with the observations of fine technical and typological properties of tools and decorative items reported from archaeological Denisovan sites. The data also suggest that differential spatial-temporal regulation of gene products promoted by the subspecies-specific mutations in the miRNA genes might have occurred in the brains of Homo sapiens denisova and Homo sapiens neanderthalensis, potentially contributing to the cultural differences between these two archaic hominines.
Project description:PurposeWe investigated the evidence of recent positive selection in the human phototransduction system at single nucleotide polymorphism (SNP) and gene level.MethodsSNP genotyping data from the International HapMap Project for European, Eastern Asian, and African populations was used to discover differences in haplotype length and allele frequency between these populations. Numeric selection metrics were computed for each SNP and aggregated into gene-level metrics to measure evidence of recent positive selection. The level of recent positive selection in phototransduction genes was evaluated and compared to a set of genes shown previously to be under recent selection, and a set of highly conserved genes as positive and negative controls, respectively.ResultsSix of 20 phototransduction genes evaluated had gene-level selection metrics above the 90th percentile: RGS9, GNB1, RHO, PDE6G, GNAT1, and SLC24A1. The selection signal across these genes was found to be of similar magnitude to the positive control genes and much greater than the negative control genes.ConclusionsThere is evidence for selective pressure in the genes involved in retinal phototransduction, and traces of this selective pressure can be demonstrated using SNP-level and gene-level metrics of allelic variation. We hypothesize that the selective pressure on these genes was related to their role in low light vision and retinal adaptation to ambient light changes. Uncovering the underlying genetics of evolutionary adaptations in phototransduction not only allows greater understanding of vision and visual diseases, but also the development of patient-specific diagnostic and intervention strategies.