Project description:Because gastric cancer cells already had genetic and epigenetic alterations which can affect the gastric carcinogenesis, we tried to characterize genetic and epigenetic changes during gastric carcinogenesis. To do this, we performed SNP array. Overall design: Copy number alteration profiles of gastric mucosa, intestinal metaplasia, and gastric cancer cells were generated by SNP6.0 Array.
Project description:Background: HER2 antagonists have marked activity and are approved for the treatment of HER2 overexpressing breast and gastric cancers. Recent studies have shown that ERBB2 (HER2) gene amplification and overexpression may also be actionable in other tumor types. Inter- and intratumoral heterogeneity in HER2 status, however, poses a significant challenge in identifying patients that may benefit from HER2-targeted therapies. ERBB2 amplification as identified by circulating cell-free DNA (cfDNA), which circumvents tissue heterogeneity issues, is emerging as a robust biomarker predictive of response to anti-HER2 agents. Here, the prevalence and genomic landscape of ERBB2 alterations detectable by next-generation sequencing (NGS) of cfDNA was evaluated in a large cohort of Asian patients with advanced solid tumors. Methods: Results were queried for consecutive patients (n = 469) tested by a comprehensive 70/73-gene cfDNA NGS assay (Guardant360®) between November 2015 and June 2018. Patients with ERBB2 gene alterations including copy number amplifications (CNAs), single nucleotide variants (SNVs), and insertion-deletions (indels) were identified. Results: ERBB2 alterations were detected in 52 patients (11.1%); ERBB2 SNVs, CNAs, and indels were found in 27 (5.8%), 27 (5.8%), and 10 (2.1%) patients, respectively. ERBB2 amplification was most frequently identified in gastric (21.4%; 6/28), colorectal (11.1%; 5/45), lung (3.9%; 9/231), and breast (3.2%; 1/31) cancer patients. ERBB2 amplification was often mutually exclusive with other oncogenic alterations in gastric (83.3%; 5/6) and colorectal (60%; 3/5) cancer patients. ERBB2 copy number gains were also highest in gastric and colorectal cancers (median 4.8 and 6.6, respectively). We further report two cases of advanced gastric cancer patients, one treatment naïve, and the other having failed four lines of therapy, whose ERBB2 CNAs were identified by cfDNA and derived clinical benefit from HER2-based therapies. Conclusion: Our data indicate that ERBB2 amplification is a common event in solid tumors among Asian cancer patients. High ERBB2 incidence and copy number gains were observed in gastric and colorectal cancer patients, often in the absence of other oncogenic mutations, underscoring its likely role as the driver alteration in those settings. Finally, we show the potential of comprehensive cfDNA testing in identifying patients who are most likely to benefit from HER2-targeted therapies.
Project description:Genetic differences that specify unique aspects of human evolution have typically been identified by comparative analyses between the genomes of humans and closely related primates, including more recently the genomes of archaic hominins. Not all regions of the genome, however, are equally amenable to such study. Recurrent copy number variation (CNV) at chromosome 16p11.2 accounts for approximately 1% of cases of autism and is mediated by a complex set of segmental duplications, many of which arose recently during human evolution. Here we reconstruct the evolutionary history of the locus and identify bolA family member 2 (BOLA2) as a gene duplicated exclusively in Homo sapiens. We estimate that a 95-kilobase-pair segment containing BOLA2 duplicated across the critical region approximately 282 thousand years ago (ka), one of the latest among a series of genomic changes that dramatically restructured the locus during hominid evolution. All humans examined carried one or more copies of the duplication, which nearly fixed early in the human lineage--a pattern unlikely to have arisen so rapidly in the absence of selection (P?<?0.0097). We show that the duplication of BOLA2 led to a novel, human-specific in-frame fusion transcript and that BOLA2 copy number correlates with both RNA expression (r?=?0.36) and protein level (r?=?0.65), with the greatest expression difference between human and chimpanzee in experimentally derived stem cells. Analyses of 152 patients carrying a chromosome 16p11. rearrangement show that more than 96% of breakpoints occur within the H. sapiens-specific duplication. In summary, the duplicative transposition of BOLA2 at the root of the H. sapiens lineage about 282?ka simultaneously increased copy number of a gene associated with iron homeostasis and predisposed our species to recurrent rearrangements associated with disease.
Project description:BACKGROUND: Genomic instability with frequent DNA copy number alterations is one of the key hallmarks of carcinogenesis. The chromosomal regions with frequent DNA copy number gain and loss in human gastric cancer are still poorly defined. It remains unknown how the DNA copy number variations contributes to the changes of gene expression profiles, especially on the global level. PRINCIPAL FINDINGS: We analyzed DNA copy number alterations in 64 human gastric cancer samples and 8 gastric cancer cell lines using bacterial artificial chromosome (BAC) arrays based comparative genomic hybridization (aCGH). Statistical analysis was applied to correlate previously published gene expression data obtained from cDNA microarrays with corresponding DNA copy number variation data to identify candidate oncogenes and tumor suppressor genes. We found that gastric cancer samples showed recurrent DNA copy number variations, including gains at 5p, 8q, 20p, 20q, and losses at 4q, 9p, 18q, 21q. The most frequent regions of amplification were 20q12 (7/72), 20q12-20q13.1 (12/72), 20q13.1-20q13.2 (11/72) and 20q13.2-20q13.3 (6/72). The most frequent deleted region was 9p21 (8/72). Correlating gene expression array data with aCGH identified 321 candidate oncogenes, which were overexpressed and showed frequent DNA copy number gains; and 12 candidate tumor suppressor genes which were down-regulated and showed frequent DNA copy number losses in human gastric cancers. Three networks of significantly expressed genes in gastric cancer samples were identified by ingenuity pathway analysis. CONCLUSIONS: This study provides insight into DNA copy number variations and their contribution to altered gene expression profiles during human gastric cancer development. It provides novel candidate driver oncogenes or tumor suppressor genes for human gastric cancer, useful pathway maps for the future understanding of the molecular pathogenesis of this malignancy, and the construction of new therapeutic targets.
Project description:Gastric cancer (GC) is one of the leading causes of cancer related mortality in the world. Being asymptomatic in nature till advanced stage, diagnosis of gastric cancer becomes difficult in early stages of the disease. The onset and progression of gastric cancer has been attributed to multiple factors including genetic alterations, epigenetic modifications, Helicobacter pylori and Epstein-Barr Virus (EBV) infection, and dietary habits. Next Generation Sequencing (NGS) based approaches viz. Whole Genome Sequencing (WGS), Whole Exome Sequencing (WES), RNA-Seq, and targeted sequencing have expanded the knowledge base of molecular pathogenesis of gastric cancer. In this review, we highlight recent NGS-based advances covering various genetic alterations (Microsatellite Instability, Single Nucleotide Variations, and Copy Number Variations), epigenetic changes (DNA methylation, histone modification, microRNAs) and differential gene expression during gastric tumorigenesis. We also briefly discuss the current and future potential biomarkers, drugs and therapeutic approaches available for the management of gastric cancer.
Project description:BACKGROUND: Epithelial ovarian cancer is characterized by multiple genomic alterations; most are passenger alterations which do not confer tumor growth. Like many cancers, it is a heterogeneous disease and can be broadly categorized into 4 main histotypes of clear cell, endometrioid, mucinous, and serous. To date, histotype-specific copy number alterations have been difficult to elucidate. The difficulty lies in having sufficient sample size in each histotype for statistical analyses. METHODS: To dissect the heterogeneity of ovarian cancer and identify histotype-specific alterations, we used an in silico hypothesis-driven approach on multiple datasets of epithelial ovarian cancer. RESULTS: In concordance with previous studies on global copy number alterations landscape, the study showed similar alterations. However, when the landscape was de-convoluted into histotypes, distinct alterations were observed. We report here significant histotype-specific copy number alterations in ovarian cancer and showed that there is genomic diversity amongst the histotypes. 76 cancer genes were found to be significantly altered with several as potential copy number drivers, including ERBB2 in mucinous, and TPM3 in endometrioid histotypes. ERBB2 was found to have preferential alterations, where it was amplified in mucinous (28.6%) but deleted in serous tumors (15.1%). Validation of ERBB2 expression showed significant correlation with microarray data (p=0.007). There also appeared to be reciprocal relationship between KRAS mutation and copy number alterations. In mucinous tumors where KRAS mutation is common, the gene was not significantly altered. However, KRAS was significantly amplified in serous tumors where mutations are rare in high grade tumors. CONCLUSIONS: The study demonstrates that the copy number landscape is specific to the histotypes and identification of these alterations can pave the way for targeted drug therapy specific to the histotypes.