Project description:This SuperSeries is composed of the following subset Series: GSE31389: Gene expression profile of Tra1 GID (Gal4 interaction defective) mutants GSE31390: Gene expression profile of Tra1 dependent genes Refer to individual Series
Project description:Promoter-specific transcriptional activators (activators) stimulate transcription through direct interactions with one or more components of the transcription machinery, termed the “target”. Previous studies have provided evidence that the Tra1 subunit of the yeast SAGA (Spt-Ada-Gcn5-acetyltransferase) complex is the target of the yeast activator Gal4. However, several other general transcription factors, in particular the mediator complex, have also been implicated as Gal4 targets. To investigate the essentiality of Tra1 as a target of Gal4, here we derive Tra1 mutants that are selectively defective for interaction with Gal4 in vivo (Gal4 Interaction Defective (GID) mutants). In contrast to wild-type Tra1, Tra1 GID mutants are not recruited by Gal4 to the promoter and cannot support Gal4-directed transcription activation, demonstrating that the Gal4–Tra1 interaction is required for Gal4 function. In yeast strains expressing a Tra1 GID mutant, Gal4 promoter binding is unexpectedly also diminished indicating that Gal4 and Tra1 bind cooperatively. Consistent with cooperative binding, we demonstrate that the interaction between Gal4 and Tra1 occurs predominantly on the promoter and not off DNA. Finally, we show that although Tra1 is also targeted by other activators, these interaction are unaffected by GID mutations, revealing an unanticipated specificity of the Gal4-Tra1 interaction.
Project description:Promoter-specific transcriptional activators (activators) stimulate transcription through direct interactions with one or more components of the transcription machinery, termed the “target”. Previous studies have provided evidence that the Tra1 subunit of the yeast SAGA (Spt-Ada-Gcn5-acetyltransferase) complex is the target of the yeast activator Gal4. However, several other general transcription factors, in particular the mediator complex, have also been implicated as Gal4 targets. To investigate the essentiality of Tra1 as a target of Gal4, here we derive Tra1 mutants that are selectively defective for interaction with Gal4 in vivo (Gal4 Interaction Defective (GID) mutants). In contrast to wild-type Tra1, Tra1 GID mutants are not recruited by Gal4 to the promoter and cannot support Gal4-directed transcription activation, demonstrating that the Gal4–Tra1 interaction is required for Gal4 function. In yeast strains expressing a Tra1 GID mutant, Gal4 promoter binding is unexpectedly also diminished indicating that Gal4 and Tra1 bind cooperatively. Consistent with cooperative binding, we demonstrate that the interaction between Gal4 and Tra1 occurs predominantly on the promoter and not off DNA. Finally, we show that although Tra1 is also targeted by other activators, these interaction are unaffected by GID mutations, revealing an unanticipated specificity of the Gal4-Tra1 interaction.
Project description:Promoter-specific transcriptional activators (activators) stimulate transcription through direct interactions with one or more components of the transcription machinery, termed the “target”. Previous studies have provided evidence that the Tra1 subunit of the yeast SAGA (Spt-Ada-Gcn5-acetyltransferase) complex is the target of the yeast activator Gal4. However, several other general transcription factors, in particular the mediator complex, have also been implicated as Gal4 targets. To investigate the essentiality of Tra1 as a target of Gal4, here we derive Tra1 mutants that are selectively defective for interaction with Gal4 in vivo (Gal4 Interaction Defective (GID) mutants). In contrast to wild-type Tra1, Tra1 GID mutants are not recruited by Gal4 to the promoter and cannot support Gal4-directed transcription activation, demonstrating that the Gal4–Tra1 interaction is required for Gal4 function. In yeast strains expressing a Tra1 GID mutant, Gal4 promoter binding is unexpectedly also diminished indicating that Gal4 and Tra1 bind cooperatively. Consistent with cooperative binding, we demonstrate that the interaction between Gal4 and Tra1 occurs predominantly on the promoter and not off DNA. Finally, we show that although Tra1 is also targeted by other activators, these interaction are unaffected by GID mutations, revealing an unanticipated specificity of the Gal4-Tra1 interaction. 3 samples were analyzed in duplicate with completely randomized design
Project description:Promoter-specific transcriptional activators (activators) stimulate transcription through direct interactions with one or more components of the transcription machinery, termed the “target”. Previous studies have provided evidence that the Tra1 subunit of the yeast SAGA (Spt-Ada-Gcn5-acetyltransferase) complex is the target of the yeast activator Gal4. However, several other general transcription factors, in particular the mediator complex, have also been implicated as Gal4 targets. To investigate the essentiality of Tra1 as a target of Gal4, here we derive Tra1 mutants that are selectively defective for interaction with Gal4 in vivo (Gal4 Interaction Defective (GID) mutants). In contrast to wild-type Tra1, Tra1 GID mutants are not recruited by Gal4 to the promoter and cannot support Gal4-directed transcription activation, demonstrating that the Gal4–Tra1 interaction is required for Gal4 function. In yeast strains expressing a Tra1 GID mutant, Gal4 promoter binding is unexpectedly also diminished indicating that Gal4 and Tra1 bind cooperatively. Consistent with cooperative binding, we demonstrate that the interaction between Gal4 and Tra1 occurs predominantly on the promoter and not off DNA. Finally, we show that although Tra1 is also targeted by other activators, these interaction are unaffected by GID mutations, revealing an unanticipated specificity of the Gal4-Tra1 interaction. Strain MDC1(TRA1 WT) and MDC3 (Tra1 ts) were grown at 30˚C and then shifted to 37˚C for 60, 90 and 120 mins.
Project description:Tra1 is a component of the Saccharomyces cerevisiae SAGA and NuA4 complexes and a member of the phosphatidylinositol 3-kinase (PI3K) related kinase family that contain a C- terminal PI3K domain followed by a ~ 35-residue FATC domain. We have characterized four alleles with single residue changes in the FATC domain. Of these tra1-L3733A had the most pronounced effects with phenotypes including temperature and cold sensitivity, and reduced growth in media containing ethanol, Calcofluor white, rapamycin, chloramphenicol and geneticin. Tra1-L3733A interacted at normal levels with components of the NuA4 and SAGA complexes, and did not significantly alter histone acetylation patterns. The tra1-L3733A allele resulted in two-fold or greater change in expression of approximately 11% of yeast genes in rich media. Of the 279 genes with increased expression, 175 were ribosomal subunits or involved in ribosomal function or biogenesis. Elevated levels of Pol I and Pol III transcripts were also observed. The phenotypes of the tra1-L3733A overlapped with but were not identical to strains containing deletions of SAGA or NuA4 components or with strains containing mutations in the PI3K domain. Our finding that the double mutant allele, tra1-SRR3413/L3733A with alterations in the PI3K and FATC domains, resulted in wild type growth, suggests a model whereby the FATC domain negatively regulates the activity of the PI3K domain. Expression of genes involved in ribosome biosynthesis, other than the ribosomal subunits themselves, returned to near normal levels in the double mutant strain. We also characterized tra1-G3745, which contains an additional glycine residue following the normal C-terminal phenylalanine. This allele did not support viability and showed severe dominant negative effects. In contrast to what was observed for tra1-L3733A, tra1-G4745 resulted in decreased expression of genes required for ribosome biogenesis and did not interact with Esa1 or Spt7.
Project description:Tra1 is a component of the Saccharomyces cerevisiae SAGA and NuA4 complexes and a member of the phosphatidylinositol 3-kinase (PI3K) related kinase family that contain a C- terminal PI3K domain followed by a ~ 35-residue FATC domain. We have characterized four alleles with single residue changes in the FATC domain. Of these tra1-L3733A had the most pronounced effects with phenotypes including temperature and cold sensitivity, and reduced growth in media containing ethanol, Calcofluor white, rapamycin, chloramphenicol and geneticin. Tra1-L3733A interacted at normal levels with components of the NuA4 and SAGA complexes, and did not significantly alter histone acetylation patterns. The tra1-L3733A allele resulted in two-fold or greater change in expression of approximately 11% of yeast genes in rich media. Of the 279 genes with increased expression, 175 were ribosomal subunits or involved in ribosomal function or biogenesis. Elevated levels of Pol I and Pol III transcripts were also observed. The phenotypes of the tra1-L3733A overlapped with but were not identical to strains containing deletions of SAGA or NuA4 components or with strains containing mutations in the PI3K domain. Our finding that the double mutant allele, tra1-SRR3413/L3733A with alterations in the PI3K and FATC domains, resulted in wild type growth, suggests a model whereby the FATC domain negatively regulates the activity of the PI3K domain. Expression of genes involved in ribosome biosynthesis, other than the ribosomal subunits themselves, returned to near normal levels in the double mutant strain. We also characterized tra1-G3745, which contains an additional glycine residue following the normal C-terminal phenylalanine. This allele did not support viability and showed severe dominant negative effects. In contrast to what was observed for tra1-L3733A, tra1-G4745 resulted in decreased expression of genes required for ribosome biogenesis and did not interact with Esa1 or Spt7. Three biological replicate experiments including one dye-swap were performed for yeast strains CY3003(TRA1::Tn10LUK with IB150(myc9-tra1_L3733A-YCplac111)) and CY3015(TRA1::Tn10LUK with IB157(myc9-tra1_SRR3413_L3733A-YCplac111)) with reference to CY2706(TRA1::Tn10LUK with 1980(myc9-TRA1-YCplac111)). Similarly, three biological replicate experiments including one dye-swap were performed for yeast strain CY3019(TRA1::Tn10LUK with 1259(myc-TRA1-YCplac111) and IB162(myc9-tra1_G3745-YCplac111)) with reference to CY3020(TRA1::Tn10LUK with 1259(myc-TRA1-YCplac111) and IB160(myc9-TRA1-YCplac111)).