Project description:The expansion of repressive epigenetic marks has been implicated in heterochromatin formation during embryonic development, but the general applicability of this mechanism is unclear. Here we show that nuclear rearrangement of repressive histone marks H3K9me3 and H3K27me3 into non-overlapping structural layers characterizes senescence-associated heterochromatic foci (SAHF) formation in human fibroblasts. However, the global landscape of these repressive marks remains unchanged upon SAHF formation, suggesting that in somatic cells heterochromatin can be formed through the spatial repositioning of pre-existing repressively marked histones. This model is reinforced by the correlation of pre-senescent replication timing with both the subsequent layered structure of SAHFs and the global landscape of the repressive marks, allowing us to integrate microscopic and genomic information. Furthermore, modulation of SAHF structure does not affect the occupancy of these repressive marks nor vice versa. These experiments reveal that high-order heterochromatin formation and epigenetic remodeling of the genome can be discrete events. ChIP-seq for different histone marks in both growing and Ras-induced senescent fibroblasts, in the presence or absence of certain sh-RNAs K9me3Grow2.bed (growing) Chip Seq Analysis of H3K9me3 in ER:Ras expressing IMR90 human diploid fibroblasts d6 4OHT K9me3Sen2.bed (senescent) Chip Seq Analysis of H3K9me3 in ER:Ras expressing IMR90 human diploid fibroblasts with no treatment K9me2Grow3.bed (growing) Chip Seq Analysis of H3K9me2 in ER:Ras expressing IMR90 human diploid fibroblasts with no treatment K9me2Sen3.bed (senescent) Chip Seq Analysis of H3K9me2 in ER:Ras expressing IMR90 human diploid fibroblasts d6 4OHT K27me3Sen3.bed (senescent) Chip Seq Analysis of H3K27me3 in ER:Ras expressing IMR90 human diploid fibroblasts d6 4OHT K27me3Grow2.bed (growing) Chip Seq Analysis of H3K27me3 in ER:Ras expressing IMR90 human diploid fibroblasts with no treatment K36me3Grow2.bed (growing) Chip Seq Analysis of H3K36me3 in ER:Ras expressing IMR90 human diploid fibroblasts with no treatment K36me3Sen2.bed (senescent) Chip Seq Analysis of H3K36me3 in ER:Ras expressing IMR90 human diploid fibroblasts d6 4OHT K4me3Grow2.bed (growing) Chip Seq Analysis of H3K4me3 in ER:Ras expressing IMR90 human diploid fibroblasts with no treatment K4me3Sen3.bed (senescent) Chip Seq Analysis of H3K4me3 in ER:Ras expressing IMR90 human diploid fibroblasts d6 4OHT
Project description:Cellular senescence can be transmitted to neighbouring cells in a paracrine manner through different mechanisms, including soluble factors released by senescent cells. To understand the dynamic regulation of paracrine senescence, here we investigated gene expression profiles in normal human fibroblasts (IMR90) exposed to conditioned medium generated by an inducible model of fibroblast Oncogene-Induced Senescence (IMR90-ER:RAS) at different time points after induction of senescence. Overall design: mRNA expression profiles were obtained from human IMR90 primary fibroblasts exposed to conditioned medium from IMR90-ER:RAS fibroblasts at different times after senescence induction with 4-hydroxy-tamoxifen (4-OHT). Each sample was analyzed in duplicate by RNA-Seq using Illumina HiSeq.
Project description:The action of RB as a tumor suppressor has been difficult to define, in part, due to the redundancy of the related proteins p107 and p130. By coupling advanced RNAi technology to suppress RB, p107 or p130 with a genome wide analysis of gene expression in growing, quiescent or ras-senescent cells, we identified a unique and specific activity of RB in repressing DNA replication as cells exit the cell cycle into senescence, a tumor suppressive program. Overall design: Expression profiles of IMR90 cells before and after RNAi-mediated supppression of RB, p107 or p130 in growing, quiescent or ras-induced senescent conditions. RNA was extracted from growing, low serum (0.1% FBS), confluent, or ras-senescent cells.
Project description:Clearing senescent cells extends healthspan in mice. Using a hypothesis-driven bioinformatics-based approach, we recently identified pro-survival pathways in human senescent cells that contribute to their resistance to apoptosis. This led to identification of dasatinib (D) and quercetin (Q) as senolytics, agents that target some of these pathways and induce apoptosis preferentially in senescent cells. Among other pro-survival regulators identified was Bcl-xl. Here, we tested whether the Bcl-2 family inhibitors, navitoclax (N) and TW-37 (T), are senolytic. Like D and Q, N is senolytic in some, but not all types of senescent cells: N reduced viability of senescent human umbilical vein epithelial cells (HUVECs), IMR90 human lung fibroblasts, and murine embryonic fibroblasts (MEFs), but not human primary preadipocytes, consistent with our previous finding that Bcl-xl siRNA is senolytic in HUVECs, but not preadipocytes. In contrast, T had little senolytic activity. N targets Bcl-2, Bcl-xl, and Bcl-w, while T targets Bcl-2, Bcl-xl, and Mcl-1. The combination of Bcl-2, Bcl-xl, and Bcl-w siRNAs was senolytic in HUVECs and IMR90 cells, while combination of Bcl-2, Bcl-xl, and Mcl-1 siRNAs was not. Susceptibility to N correlated with patterns of Bcl-2 family member proteins in different types of human senescent cells, as has been found in predicting response of cancers to N. Thus, N is senolytic and acts in a potentially predictable cell type-restricted manner. The hypothesis-driven, bioinformatics-based approach we used to discover that dasatinib (D) and quercetin (Q) are senolytic can be extended to increase the repertoire of senolytic drugs, including additional cell type-specific senolytic agents.
Project description:The action of RB as a tumor suppressor has been difficult to define, in part, due to the redundancy of the related proteins p107 and p130. By coupling advanced RNAi technology to suppress RB, p107 or p130 with a genome wide analysis of gene expression in growing, quiescent or ras-senescent cells, we identified a unique and specific activity of RB in repressing DNA replication as cells exit the cell cycle into senescence, a tumor suppressive program. Experiment Overall Design: Expression profiles of IMR90 cells before and after RNAi-mediated supppression of RB, p107 or p130 in growing, quiescent or ras-induced senescent conditions. RNA was extracted from growing, low serum (0.1% FBS), confluent, or ras-senescent cells.
Project description:Oncogene-induced senescence (OIS) is a tumor suppression mechanism that blocks cell proliferation in response to oncogenic signalling. OIS is frequently accompanied by multinucleation; however, the origin of this is unknown. Here we show that multinucleate OIS cells originated mostly from failed mitosis. Prior to senescence, mutant RasV12 activation in primary human fibroblasts compromised mitosis, associated with abnormal expression of mitotic genes that enter M-phase. Simultaneously, RasV12 activation enhanced survival of damaged mitoses, culminating in extended mitotic arrest and aberrant exit from mitosis via mitotic slippage. ERK-dependent transcriptional up-regulation of Mcl1 was responsible for enhanced slippage of cells with mitotic defects and subsequent cell survival. Importantly, mitotic slippage and oncogene signalling synergistically induced senescence and key senescence regulators p21 and p16. We propose that activated Ras induces transcriptional changes that predispose cells undergoing OIS to mitotic stress and multinucleation. We used RNA-seq of IMR90 cells with inducible expression of oncogenic RasV12 that were synchronised in mitosis, to characterise the nature of mitotic defects that lead to multinucleation of oncogene-induced senescent cells
Project description:Cellular senescence defines an irreversible cell growth arrest state linked to loss of tissue function and aging in mammals. This transition from proliferation to senescence is typically characterized by increased expression of the cell-cycle inhibitor p16INK4a and formation of senescence-associated heterochromatin foci (SAHF). SAHF formation depends on HIRA-mediated nucleosome assembly of histone H3.3, which is regulated by the serine/threonine protein kinase Pak2. However, it is unknown if Pak2 contributes to cellular senescence. Here, we show that depletion of Pak2 delayed oncogene-induced senescence in IMR90 human fibroblasts and oxidative stress-induced senescence of mouse embryonic fibroblasts (MEFs), whereas overexpression of Pak2 accelerated senescence of IMR90 cells. Importantly, depletion of Pak2 in BubR1 progeroid mice attenuated the onset of aging-associated phenotypes and extended life span. Pak2 is required for expression of genes involved in cellular senescence and regulated the deposition of newly synthesized H3.3 onto chromatin in senescent cells. Together, our results demonstrate that Pak2 is an important regulator of cellular senescence and organismal aging, in part through the regulation of gene expression and H3.3 nucleosome assembly.
Project description:Oncogene-induced senescence is an anti-proliferative stress response program that acts as a fail-safe mechanism to limit oncogenic transformation and is regulated by the retinoblastoma protein (RB) and p53 tumor suppressor pathways. We identify the atypical E2F family member E2F7 as the only E2F transcription factor potently upregulated during oncogene-induced senescence, a setting where it acts in response to p53 as a direct transcriptional target. Once induced, E2F7 binds and represses a series of E2F target genes and cooperates with RB to efficiently promote cell cycle arrest and limit oncogenic transformation. Disruption of RB triggers a further increase in E2F7, which induces a second cell cycle checkpoint that prevents unconstrained cell division despite aberrant DNA replication. Mechanistically, E2F7 compensates for the loss of RB in repressing mitotic E2F target genes. Examination of E2F7 binding in either growing or senescent IMR90 cells with different hairpins.
Project description:Oncogene-induced senescence is an anti-proliferative stress response program that acts as a fail-safe mechanism to limit oncogenic transformation and is regulated by the retinoblastoma protein (RB) and p53 tumor suppressor pathways. We identify the atypical E2F family member E2F7 as the only E2F transcription factor potently upregulated during oncogene-induced senescence, a setting where it acts in response to p53 as a direct transcriptional target. Once induced, E2F7 binds and represses a series of E2F target genes and cooperates with RB to efficiently promote cell cycle arrest and limit oncogenic transformation. Disruption of RB triggers a further increase in E2F7, which induces a second cell cycle checkpoint that prevents unconstrained cell division despite aberrant DNA replication. Mechanistically, E2F7 compensates for the loss of RB in repressing mitotic E2F target genes. Examination of p53 binding in either growing or senescent IMR90 cells with different hairpins.
Project description:RRM2B is the DNA damage-inducible small subunit of ribonucleotide reductase, the rate-limiting enzyme in de novo deoxyribonucleoside triphosphate synthesis. Although RRM2B is implicated in DNA repair and the maintenance of mitochondrial DNA content, the regulation and function of RRM2B in senescence have not been previously established. Here, we show that RRM2B is highly induced in a p53-dependent manner during senescence in primary human fibroblast IMR90 cells and is expressed at higher levels in senescent precancerous human prostatic intraepithelial neoplasm lesions compared to adjacent normal prostate glands. Paradoxically, silencing RRM2B expression leads to an increase in the level of reactive oxygen species, mitochondrial membrane depolarization, and premature senescence in a p38MAPK- and p53-dependent manner in young fibroblasts. Consistently, induction of senescence is accelerated in Rrm2b deficient mouse embryo fibroblasts. Our data demonstrate that RRM2B is induced by stress signals prior to the onset of senescence and prevents premature oxidative stress-induced senescence.