Project description:Genome-wide expression and methylation differences are compared for a normal HCT116 cell line and a derived mutant with altered DNA methylation patterns. The data compares the effect of a gene mutation on genome-wide expression (and methylation). This data is being published as a technical test of utility for a novel integrative genomic algorithm (COHCAP) Keywords: parental, mutant
Project description:Genome-wide expression and methylation differences are compared for a normal HCT116 cell line and a derived mutant with altered DNA methylation patterns. The data compares the effect of a gene mutation on genome-wide expression (and methylation). This data is being published as a technical test of utility for a novel integrative genomic algorithm (COHCAP) Keywords: parental, mutant
Project description:COHCAP (City of Hope CpG Island Analysis Pipeline) is an algorithm to analyze single-nucleotide resolution DNA methylation data. It provides QC metrics, differential methylation for CpG Sites, differential methylation for CpG Islands, integration with gene expression data, and visualization of methylation values. COHCAP is currently the only DNA methylation package that can handle integration with gene expression data, and the results of this study show that COHCAP can identify regions of differential methylation with ~50% concordance with gene expression. COHCAP is scalable for analysis of both cell line data and heterogeneous patient data, and it can identify known cancer biomarkers as well as intriguing new roles of epigenetic regulation in cancer (such as methylation of estrogen receptor in breast cancer patients). This study also uses cell line data to show that COHCAP is capable of analyzing Illumina methylation array and targeted bisulfite sequencing data, with either 1-group or 2-group study designs. The accuracy of COHCAP is accessed using qPCR, EpiTect, and comparison of COHCAP regions of differential methylation with MIRA peaks. This software is freely available at https://sourceforge.net/projects/cohcap/. The following third-party datasets were utilized in the paper: BS-Seq data: GSE26826 Additional Microarray Data: GSE29290 This SuperSeries is composed of the SubSeries listed below.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:As the evolution of miRNA genes has been found to be one of the important factors in formation of the modern type of man, we performed a comparative analysis of the evolution of miRNA genes in two archaic hominines, Homo sapiens neanderthalensis and Homo sapiens denisova, and elucidated the expression of their target mRNAs in bain.A comparative analysis of the genomes of primates, including species in the genus Homo, identified a group of miRNA genes having fixed substitutions with important implications for the evolution of Homo sapiens neanderthalensis and Homo sapiens denisova. The mRNAs targeted by miRNAs with mutations specific for Homo sapiens denisova exhibited enhanced expression during postnatal brain development in modern humans. By contrast, the expression of mRNAs targeted by miRNAs bearing variations specific for Homo sapiens neanderthalensis was shown to be enhanced in prenatal brain development.Our results highlight the importance of changes in miRNA gene sequences in the course of Homo sapiens denisova and Homo sapiens neanderthalensis evolution. The genetic alterations of miRNAs regulating the spatiotemporal expression of multiple genes in the prenatal and postnatal brain may contribute to the progressive evolution of brain function, which is consistent with the observations of fine technical and typological properties of tools and decorative items reported from archaeological Denisovan sites. The data also suggest that differential spatial-temporal regulation of gene products promoted by the subspecies-specific mutations in the miRNA genes might have occurred in the brains of Homo sapiens denisova and Homo sapiens neanderthalensis, potentially contributing to the cultural differences between these two archaic hominines.