Project description:Gene expresion profiles from the scAT following 6 week LC n-3 PUFA and 6 week placebo supplementation were compared Women with PCOS were supplemented with 4g n-3 PUFA (containing 1.8g EPA and DHA) daily for 6 weeks and changes in subcutaneous adipose tissue gene expression was compared with 6 week placebo supplementation. This was a cross-over placebo, controlled dietary intervention wherein women with PCOS received both treatments.
Project description:Gene expresion profiles from the scAT following 6 week LC n-3 PUFA and 6 week placebo supplementation were compared Women with PCOS were supplemented with 4g n-3 PUFA (containing 1.8g EPA and DHA) daily for 6 weeks and changes in subcutaneous adipose tissue gene expression was compared with 6 week placebo supplementation.
Project description:Dietary consumption of long-chain omega-3 polyunsaturated fatty acids (n-3 PUFA) may protect against cardiometabolic disease through modulation of systemic and adipose inflammation. However, it is often difficult to detect the subtle effects of n-3 PUFA on inflammatory biomarkers in traditional intervention studies. We aimed to identify novel n-3 PUFA modulated gene expression using unbiased adipose transcriptomics during evoked endotoxemia in a clinical trial of n-3 PUFA supplementation. We analyzed adipose gene expression using RNA sequencing in the fenofibrate and omega-3 fatty acid modulation of endotoxemia (FFAME) trial of healthy individuals at three timepoints: before and after n-3 PUFA supplementation (n=8; 3600mg/day EPA/DHA) for 6weeks compared with placebo (n=6), as well as during a subsequent evoked inflammatory challenge (lipopolysaccharide 0.6ng/kg i.v.). As expected, supplementation with n-3 PUFA vs. placebo alone had only modest effects on adipose tissue gene expression. In contrast, the transcriptomic response to evoked endotoxemia was significantly modified by n-3 PUFA supplementation, with several genes demonstrating significant n-3 PUFA gene-nutrient interactions. These data highlight potential mechanisms whereby n-3 PUFA consumption may enhance the immune response to an inflammatory challenge.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:Polycystic ovary syndrome (PCOS) is characterised by a hormonal imbalance affecting the reproductive and metabolic health of reproductive-aged women. Exercise is often recommended as a first-line therapy for women with PCOS to help improve their overall health however, women with PCOS are resistant to the metabolic benefits of exercise training. Here, we aimed to gain insight into the mechanisms responsible for such resistance to exercise in PCOS. We employed an in vitro approach with electrical pulse stimulation (EPS) of cultured skeletal muscle cells to explore whether muscle cells from women with PCOS have an altered gene expression signature in response to muscle contraction. Following EPS, 4,719 genes were differentially expressed (FDR < 0.05) in myotubes from women with PCOS compared to only 173 in healthy control women. Both groups included genes involved in skeletal muscle contraction. We also determined the effect of two transforming growth factor-beta ligands that are elevated in plasma of women with PCOS, the transforming growth factor beta-1 (TGFβ1) and the anti-müllerian hormone (AMH), alone and on the EPS-induced response. While AMH (30 ng/ml) had no effect, TGFβ1 (5 ng/ml) induced the expression of extracellular matrix genes and impaired the exercise-like gene expression signature in myotubes from women with and without PCOS in response to EPS by interfering with key processes related to muscle contraction, calcium transport and actin filament. Collectively, our findings suggest that while the fundamental gene expression responses of skeletal muscle to contraction is intact in PCOS, elevated circulating factors like TGFβ1 may be responsible for the impaired adaptation to exercise intervention in women with PCOS.
Project description:To identify the altered miRNA expression profiles of PCOS patients, the differentially expressed miRNAs were identified from cumulus cells of PCOS patients by comparing to that of normal women. Case-control study that involved 18 women with PCOS and 18 women without PCOS (control). The miRNA expression profiles of cumulus cells were identified by miRNA array.
Project description:Liver transcriptomes of Atlantic salmon families with contrasting flesh n-3 LC-PUFA profiles, and all fed the same 100% vegetable oil replacement diet, were compared by microarray analysis (Agilent oligoarray platform). The objective was to identify gene pathways and molecular mechanisms which might explain differences in flesh n-3 LC-PUFA content, independent of total lipid deposition, when salmon families are fed the same LC-PUFA deficient diet. A factorial design was chosen in which families containing higher and lower n-3 LC-PUFA relative levels were compared at similar total lipid percentages in flesh.