Project description:Mouse ES-cells with different sex chromosome compliment were differentiated into EpiSC, samples were taken every 4-12 hours for 84 hours in total. The original data for the XX-cells is also available as GSE34243, but normalisation of these differs. Overall design: Mouse Pgk12.1 ES cells or E14 cells with different sex chromosome compliment were differentiated into EpiSC, samples were taken every 4-12 hours for 84 hours in total
Project description:Recent data demonstrates that stem cells can exist in two morphologically, molecularly and functionally distinct pluripotent states; a naïve LIF-dependent pluripotent state which is represented by murine embryonic stem cells (mESCs) and an FGF-dependent primed pluripotent state represented by murine and rat epiblast stem cells (EpiSCs). We find that derivation of induced pluripotent stem cells (iPSCs) under EpiSC culture conditions yields FGF-dependent iPSCs from hereon called FGF-iPSCs) which, unexpectedly, display naïve ES-like/ICM properties. FGF-iPSCs display X-chromosome activation, multi-lineage differentiation, teratoma competence and chimera contribution in vivo. Our findings suggest that in 129 and Bl6 mouse strains, iPSCs can dominantly adopt a naive pluripotent state regardless of culture growth factor conditions. Characterization of the key molecular signalling pathways revealed FGF-iPSCs to depend on the Activin/Nodal and FGF pathways, while signalling through the JAK-STAT pathway is not required for FGF-iPS cell maintenance. Our findings suggest that in 129 and Bl6 mouse strains, iPSCs can dominantly adopt a naive pluripotent state regardless of culture growth factor conditions.
Project description:Mouse embryonic stem (ES) cells derived from pluripotent early epiblast contribute functionally differentiated progeny to all foetal lineages of chimaeras. By contrast, epistem cell (EpiSC) lines from post-implantation epithelialised epiblast are unable to colonise the embryo even though they express the core pluripotency genes Oct4, Sox2 and Nanog. We examined interconversion between these two cell types. ES cells can readily become EpiSCs in response to growth factor cues. By contrast, EpiSCs do not change into ES cells. We exploited PiggyBac transposition to introduce a single reprogramming factor, Klf4, into EpiSCs. No effect was apparent in EpiSC culture conditions, but in ground state ES cell conditions a fraction of cells formed undifferentiated colonies. These EpiSC-derived induced pluripotent stem (Epi-iPS) cells activated expression of ES cell-specific transcripts including endogenous Klf4, and downregulated markers of lineage specification. X chromosome silencing in female cells, a feature of the EpiSC state, was erased in Epi-iPS cells. They produced high-contribution chimaeras that yielded germline transmission. These properties were maintained after Cre-mediated deletion of the Klf4 transgene, formally demonstrating complete and stable reprogramming of developmental phenotype. Thus, re-expression of Klf4 in an appropriate environment can regenerate the naïve ground state from EpiSCs. Reprogramming is dependent on suppression of extrinsic growth factor stimuli and proceeds to completion in less than 1% of cells. This substantiates the argument that EpiSCs are developmentally, epigenetically and functionally differentiated from ES cells. However, because a single transgene is the minimum requirement to attain the ground state, EpiSCs offer an attractive opportunity for screening for unknown components of the reprogramming process.
Project description:The advent of reprogramming and its impact on stem cell biology has renewed interest in lineage restriction in mammalian embryos, the source of embryonic (ES), epiblast (EpiSC), trophoblast (TS), and extraembryonic endoderm (XEN) stem cell lineages. Isolation of specific cell types during stem cell differentiation and reprogramming, and also directly from embryos, is a major technical challenge because few cell-surface proteins are known that can distinguish each cell type. We provide a large-scale proteomic resource of cell-surface proteins for the four embryo-derived stem cell lines. We validated 27 antibodies against lineage-specific cell-surface markers, which enabled investigation of specific cell populations during ES-EpiSC reprogramming and ES-to-XEN differentiation. Identified markers also allowed prospective isolation and characterization of viable lineage progenitors from blastocysts by flow cytometry. These results provide a comprehensive stem cell proteomic resource and enable new approaches to interrogate the mechanisms that regulate cell fate specification.
Project description:BACKGROUND:Expression patterns between males and females vary in every adult tissue, even in organs with no conspicuous dimorphisms such as the heart. While studies of male and female differences have traditionally focused on the influence of sex hormones, these do not account for all the differences at the molecular and epigenetic levels. We previously reported that a substantial number of genes were differentially expressed in male and female mouse embryonic stem (ES) cells and revealed dose-dependent enhancer activity in response to Prdm14, a key pluripotency factor expressed more highly in female ES cells. In this work, we investigated the role of Prdm14 in establishing sex-specific gene expression networks. We surveyed the sex-specific landscape in early embryogenesis with special reference to cardiac development. We generated sex-specific co-expression networks from mouse ES cells, examined the presence of sex-specific chromatin domains, and analyzed previously published datasets from different developmental time points to characterize how sex-biased gene expression waxes and wanes to evaluate whether sex-biased networks are detectable throughout heart development. RESULTS:We performed ChIP-seq on male and female mouse ES cells to determine differences in chromatin status. Our study reveals sex-biased histone modifications, underscoring the potential for the sex chromosome complement to prime the genome differently in early development with consequences for later expression biases. Upon differentiation of ES cells to cardiac precursors, we found sex-biased expression of key transcription and epigenetic factors, some of which persisted from the undifferentiated state. Using network analyses, we also found that Prdm14 plays a prominent role in regulating a subset of dimorphic expression patterns. To determine whether sex-biased expression is present throughout cardiogenesis, we re-analyzed data from two published studies that sampled the transcriptomes of mouse hearts from 8.5 days post-coitum embryos to neonates and adults. We found sex-biased expression at every stage in heart development, and interestingly, identified a subset of genes that exhibit the same bias across multiple cardiogenic stages. CONCLUSIONS:Overall, our results support the existence of sexually dimorphic gene expression profiles and regulatory networks at every stage of cardiac development, some of which may be established in early embryogenesis and epigenetically perpetuated.
Project description:Differentiation of female murine ES cells triggers silencing of one X chromosome through X-chromosome inactivation (XCI). Immunofluorescence studies showed that soon after Xist RNA coating the inactive X (Xi) undergoes many heterochromatic changes, including the acquisition of H3K27me3. However, the mechanisms that lead to the establishment of heterochromatin remain unclear. We first analyze chromatin changes by ChIP-chip, as well as RNA expression, around the X-inactivation center (Xic) in female and male ES cells, and their day 4 and 10 differentiated derivatives. A dynamic epigenetic landscape is observed within the Xic locus. Tsix repression is accompanied by deposition of H3K27me3 at its promoter during differentiation of both female and male cells. However, only in female cells does an active epigenetic landscape emerge at the Xist locus, concomitant with high Xist expression. Several regions within and around the Xic show unsuspected chromatin changes, and we define a series of unusual loci containing highly enriched H3K27me3. Genome-wide ChIP-seq analyses show a female-specific quantitative increase of H3K27me3 across the X chromosome as XCI proceeds in differentiating female ES cells. Using female ES cells with nonrandom XCI and polymorphic X chromosomes, we demonstrate that this increase is specific to the Xi by allele-specific SNP mapping of the ChIP-seq tags. H3K27me3 becomes evenly associated with the Xi in a chromosome-wide fashion. A selective and robust increase of H3K27me3 and concomitant decrease in H3K4me3 is observed over active genes. This indicates that deposition of H3K27me3 during XCI is tightly associated with the act of silencing of individual genes across the Xi.
Project description:Whilst gonadal hormones can substantially influence sexual differentiation of the brain, recent findings have suggested that sex-linked genes may also directly influence neurodevelopment. Here we used the well-established murine 'four core genotype' (FCG) model on a gonadally-intact, outbred genetic background to characterise the contribution of Sry-dependent effects (i.e. those arising from the expression of the Y-linked Sry gene in the brain, or from hormonal sequelae of gonadal Sry expression) and direct effects of sex-linked genes other than Sry ('sex chromosome complement' effects) to sexually dimorphic mouse behavioural phenotypes. Over a 24 hour period, XX and XY gonadally female mice (lacking Sry) exhibited greater horizontal locomotor activity and reduced food consumption per unit bodyweight than XX and XY gonadally male mice (possessing Sry); in two behavioural tests (the elevated plus and zero mazes) XX and XY gonadally female mice showed evidence for increased anxiety-related behaviours relative to XX and XY gonadally male mice. Exploratory correlational analyses indicated that these Sry-dependent effects could not be simply explained by brain expression of the gene, nor by circulating testosterone levels. We also noted a sex chromosome complement effect on food (but not water) consumption whereby XY mice consumed more over a 24hr period than XX mice, and a sex chromosome complement effect in a third test of anxiety-related behaviour, the light-dark box. The present data suggest that: i) the male-specific factor Sry may influence activity and feeding behaviours in mice, and ii) dissociable feeding and anxiety-related murine phenotypes may be differentially modulated by Sry and by other sex-linked genes. Our results may have relevance for understanding the molecular underpinnings of sexually dimorphic behavioural phenotypes in healthy men and women, and in individuals with abnormal sex chromosome constitutions.
Project description:DNA sequences of multiple copies help in understanding evolutionary mechanisms, genomic structures and karyotype differentiation. The current study investigates the organization and distribution of different repetitive DNA in the standard complement and B chromosomes in Astyanax scabripinnis (Jenyns, 1842) chromosomes from three allopatric populations in Campos do Jordão region, São Paulo State, Brazil. The location of microsatellite sequences showed different chromosome distribution between Lavrinha Farm Stream (LFS) and Lake of Pedalinho (LP) populations. However, the karyotype of these populations basically followed the pattern of dispersed distribution in the A complement, conspicuous in telomeric/interstitial regions and preferential accumulation in the B chromosome. The B chromosome showed heterogeneous location of microsatellite probes CA, CAC and GA. The H3 and H4 histone genes were isolated from the total genome of the species and then the chromosomal mapping was performed by fluorescence in situ hybridization (FISH). The FISH signals showed high similarity for the probes H3 and H4 mapping in genomes of the populations analyzed. The sequences (GATA) n revealed a sex-specific trend between the chromosomal location in males and females at (LFS) and (LP) populations. Although species that comprise the Astyanax scabripinnis complex do not have morphologically differentiated sex chromosomes, the preferential GATA location - sex-associated - may represent a sex chromosome in differentiation.
Project description:Embryonic stem cells (ESC) are derived from the inner cell mass of the blastocyst in the presence of leukemia inhibitory factor (LIF). In vivo these cells then differentiate into epi stem cells (EpiSC) that can be derived from the Epiblast in presence of Fgf2 and ActivinA. In this study, female ESCs cultured in 2i medium have been differentiated into EpiSC for 3.5 days in vitro by addition of Fgf2 and Activin A. The gene expression profile was analyzed every 4-12 h using mouse exon arrays. Mouse Pgk12.1 ES cells were differentiated into EpiSC, samples were taken every 4-12 hours for 84 hours in total